2022届山东省聊城市冠县中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
2.下列立体图形中,主视图是三角形的是( )
A. B. C. D.
3.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )
A. B. C. D.
4.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )
A.10cm B.30cm C.45cm D.300cm
5.若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
6.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为( )
A.1 B.2 C.3 D.4
7.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
A.6 B. C.12﹣π D.12﹣π
8.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为( )
A.5 B.4 C.3 D.2
9.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
A. B.x(x+1)=1980
C.2x(x+1)=1980 D.x(x-1)=1980
10.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
11.关于▱ABCD的叙述,不正确的是( )
A.若AB⊥BC,则▱ABCD是矩形
B.若AC⊥BD,则▱ABCD是正方形
C.若AC=BD,则▱ABCD是矩形
D.若AB=AD,则▱ABCD是菱形
12.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为( )
A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式2x2﹣4x+2的最终结果是_____.
14.如图,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点O,则阴影部分的面积为_____.
15.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2 ,若,
用、表示=_____.
16.解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
17.函数的定义域是__________.
18.a(a+b)﹣b(a+b)=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
20.(6分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.
21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
22.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
23.(8分)先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
24.(10分)探究:
在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n(n为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.
拓展:
嘉嘉给琪琪出题:
“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
琪琪的思考:“在这个问题上,线段总数不可能为30”
琪琪的思考对吗?为什么?
25.(10分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数.已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.
(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;
(Ⅱ)求这个二次函数的解析式和自变量的取值范围.
26.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
27.(12分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:
购买量x(千克)
1
1.5
2
2.5
3
付款金额y(元)
a
7.5
10
12
b
(1)由表格得:a= ; b= ;
(2)求y关于x的函数解析式;
(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
2、A
【解析】
考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
【详解】
A、圆锥的主视图是三角形,符合题意;
B、球的主视图是圆,不符合题意;
C、圆柱的主视图是矩形,不符合题意;
D、正方体的主视图是正方形,不符合题意.
故选A.
【点睛】
主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
3、C
【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
【详解】
解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,
此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=10°,
∵∠OP1B=10°,
∴OP1∥AC
∵AO=OB,\
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值为OP1-OQ1=1,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=5+3=8,
∴PQ长的最大值与最小值的和是1.
故选:C.
【点睛】
本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
4、A
【解析】
根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
【详解】
直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
假设每个圆锥容器的地面半径为
解得
故答案选A.
【点睛】
本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
5、B
【解析】
利用多边形的内角和公式求出n即可.
【详解】
由题意得:(n-2)×180°=360°,
解得n=4;
故答案为:B.
【点睛】
本题考查多边形的内角和,解题关键在于熟练掌握公式.
6、B
【解析】
先由平均数是3可得x的值,再结合方差公式计算.
【详解】
∵数据1、2、3、x、5的平均数是3,
∴=3,
解得:x=4,
则数据为1、2、3、4、5,
∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
故选B.
【点睛】
本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
7、D
【解析】
根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
【详解】
解:∵BC=4,E为BC的中点,
∴CE=2,
∴S1﹣S2=3×4﹣ ,
故选D.
【点睛】
此题考查扇形面积的计算,矩形的性质及面积的计算.
8、C
【解析】
根据左视图是从左面看到的图形求解即可.
【详解】
从左面看,可以看到3个正方形,面积为3,
故选:C.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.
9、D
【解析】
根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
【详解】
根据题意得:每人要赠送(x﹣1)张相片,有x个人,
∴全班共送:(x﹣1)x=1980,
故选D.
【点睛】
此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
10、A。
【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,
∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
此时,由AB=2,根据勾股定理,得弦AP=x=。
∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
故选A。
11、B
【解析】
由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.
【详解】
解:A、若AB⊥BC,则是矩形,正确;
B、若,则是正方形,不正确;
C、若,则是矩形,正确;
D、若,则是菱形,正确;
故选B.
【点睛】
本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.
12、C
【解析】
根据题意列出代数式,化简即可得到结果.
【详解】
根据题意得:a÷(1−20%)=a÷= a(元),
故答案选:C.
【点睛】
本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1(x﹣1)1
【解析】
先提取公因式1,再根据完全平方公式进行二次分解.
【详解】
解:1x1-4x+1,
=1(x1-1x+1),
=1(x-1)1.
故答案为:1(x﹣1)1
【点睛】
本题考查提公因式法与公式法的综合运用,难度不大.
14、6﹣π
【解析】
连接、,根据阴影部分的面积计算.
【详解】
连接、,
,,
,,
为的直径,
,
,
,
,
,
阴影部分的面积
.
故答案为.
【点睛】
本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.
15、
【解析】
过点A作AE⊥DC,利用向量知识解题.
【详解】
解:过点A作AE⊥DC于E,
∵AE⊥DC,BC⊥DC,
∴AE∥BC,
又∵AB∥CD,
∴四边形AECB是矩形,
∴AB=EC,AE=BC=4,
∴DE===2,
∴AB=EC=2=DC,
∵,
∴,
∵,
∴,
∴,
故答案为.
【点睛】
向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.
16、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
【解析】
(1)先移项,再合并同类项,求出不等式1的解集即可;
(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
(1)把两不等式的解集在数轴上表示出来即可;
(4)根据数轴上不等式的解集,求出其公共部分即可.
【详解】
(1)解不等式①,得:x<1;
(2)解不等式②,得:x≥﹣2;
(1)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为:﹣2≤x<1,
故答案为:x<1、x≥﹣2、﹣2≤x<1.
【点睛】
本题主要考查一元一次不等式组的解法及在数轴上的表示。
17、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
【点睛】
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
18、(a+b)(a﹣b).
【解析】
先确定公因式为(a+b),然后提取公因式后整理即可.
【详解】
a(a+b)﹣b(a+b)=(a+b)(a﹣b).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
20、(1)
(2)(0,-1)
(3)(1,0)(9,0)
【解析】
(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
【详解】
解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
得 ,
解得
∴y=x2−2x−3;
(2)将点D(m,−m−1)代入y=x2−2x−3中,得
m2−2m−3=−m−1,
解得m=2或−1,
∵点D(m,−m−1)在第四象限,
∴D(2,−3),
∵直线BC解析式为y=x−3,
∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
∴点D关于直线BC对称的点D'(0,−1);
(3)存在.满足条件的点P有两个.
①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
∵直线BD解析式为y=3x−9,
∵直线CP过点C,
∴直线CP的解析式为y=3x−3,
∴点P坐标(1,0),
②连接BD′,过点C作CP′∥BD′,交x轴于P′,
∴∠P′CB=∠D′BC,
根据对称性可知∠D′BC=∠CBD,
∴∠P′CB=∠CBD,
∵直线BD′的解析式为
∵直线CP′过点C,
∴直线CP′解析式为,
∴P′坐标为(9,0),
综上所述,满足条件的点P坐标为(1,0)或(9,0).
【点睛】
本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.
21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
22、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
23、,当x=0时,原式=(或:当x=-1时,原式=).
【解析】
先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.
【详解】
解:原式=×=.
x满足﹣1≤x≤1且为整数,若使分式有意义,x只能取0,﹣1.
当x=0时,原式=﹣(或:当x=﹣1时,原式=).
【点睛】
本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
24、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
【解析】
探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
(2)由(1)的结论结合参会人数为n,即可得出结论;
(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
【详解】
探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
故答案为3;1.
(2)∵参加聚会的人数为n(n为正整数),
∴每人需跟(n-1)人握手,
∴握手总数为.
故答案为.
(3)依题意,得:=28,
整理,得:n2-n-56=0,
解得:n1=8,n2=-7(舍去).
答:参加聚会的人数为8人.
拓展:琪琪的思考对,理由如下:
如果线段数为2,则由题意,得:=2,
整理,得:m2-m-60=0,
解得m1=,m2=(舍去).
∵m为正整数,
∴没有符合题意的解,
∴线段总数不可能为2.
【点睛】
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
25、(0,),(4,3)
【解析】
试题分析:(Ⅰ)根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;
(Ⅱ)利用待定系数法求解可得.
试题解析:解:(Ⅰ)由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,3)、(1,0).故答案为:(0,)、(4,3)、(1,0).
(Ⅱ)设这个二次函数的解析式为y=ax2+bx+c,将(Ⅰ)三点坐标代入,得:,解得:,所以所求抛物线解析式为y=﹣x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0≤x≤1.
26、(1);(2)-2或-1;(3)-1≤n<1或1
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
(2)根据题意画出图形,分三种情况进行讨论;
(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
【详解】
解:(1)依题意,得:
解得:
∴此抛物线的解析式 ;
(2)设直线AB的解析式为y=kx+b,依题意得:
解得:
∴直线AB的解析式为y=-x.
∵点P的横坐标为m,且在抛物线上,
∴点P的坐标为(m, )
∵轴,且点Q有线段AB上,
∴点Q的坐标为(m,-m)
① 当PQ=AP时,如图,∵∠APQ=90°,轴,
∴
解得,m=-2或m=1(舍去)
② 当AQ=AP时,如图,过点A作AC⊥PQ于C,
∵为等腰直角三角形,
∴2AC=PQ
即m=1(舍去)或m=-1.
综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
∴点E的坐标为(n,n-2)
当点E恰好在抛物线上时,解得,n=-1.
∴此时n的取值范围-1≤n<1.
②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
当点E在抛物线上时,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此时n的取值范围1
【点睛】
本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
27、(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.
【解析】
(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;
(3)代入(2)的解析式即可解答.
【详解】
解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为a=5,b=1.
(2)当0≤x≤2时,设线段OA的解析式为y=kx,
∵y=kx的图象经过(2,10),
∴2k=10,解得k=5,
∴y=5x;
当x>2时,设y与x的函数关系式为:y=x+b
∵y=kx+b的图象经过点(2,10),且x=3时,y=1,
,解得,
∴当x>2时,y与x的函数关系式为:y=4x+2.
∴y关于x的函数解析式为: ;
(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.
(8+4×4+2)−24.4=1.6(元).
答:如果他们两人合起来购买,可以比分开购买节约1.6元.
【点睛】
本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.
2024年山东省聊城市冠县部分学校中考数学一模试卷(含解析): 这是一份2024年山东省聊城市冠县部分学校中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省聊城市冠县中考数学二模试卷(含解析): 这是一份2023年山东省聊城市冠县中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省聊城市冠县中考数学二模试卷(含解析): 这是一份2023年山东省聊城市冠县中考数学二模试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。