山东省济南市历城区重点名校2021-2022学年中考数学押题卷含解析
展开
这是一份山东省济南市历城区重点名校2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列计算正确的是,太原市出租车的收费标准是,计算结果是,下列各式计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
2.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A.1 B.2 C.3 D.4
3.下列计算正确的是( )
A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2
C.a2•a3=a6 D.﹣3a2+2a2=﹣a2
4.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是( )
A.11 B.8 C.7 D.5
5.计算结果是( )
A.0 B.1 C.﹣1 D.x
6.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )
A. B. C. D.
7.下列各式计算正确的是( )
A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6
C.a3•a=a4 D.(﹣a2b)3=a6b3
8.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )
A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
9.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A. B.
C. D.
10.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
12.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.
13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.
14.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_____.
15.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
16.已知且,则=__________.
三、解答题(共8题,共72分)
17.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
(1)本班有多少同学优秀?
(2)通过计算补全条形统计图.
(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?
18.(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
(1)求该一次函数表达式;
(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
19.(8分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
(1)求抛物线的函数关系式;
(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.
20.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
21.(8分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
22.(10分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.
23.(12分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)
24.解方程:-=1
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
【点睛】
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
2、B
【解析】
分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选B.
点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
3、D
【解析】
根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.
【详解】
故选项A错误,
故选项B错误,
故选项C错误,
故选项D正确,
故选:D.
【点睛】
考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.
4、B
【解析】
根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
【详解】
可设此人从甲地到乙地经过的路程为xkm,
根据题意可知:(x﹣3)×1.6+2≤1,
解得:x≤2.
即此人从甲地到乙地经过的路程最多为2km.
故选B.
【点睛】
考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
5、C
【解析】
试题解析:.
故选C.
考点:分式的加减法.
6、D
【解析】
根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.
【详解】
解:作AE⊥BC于E,
则四边形AECD为矩形,
∴EC=AD=1,AE=CD=3,
∴BE=4,
由勾股定理得,AB==5,
∴四边形ABCD的四条边之比为1:3:5:5,
D选项中,四条边之比为1:3:5:5,且对应角相等,
故选D.
【点睛】
本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.
7、C
【解析】
各项计算得到结果,即可作出判断.
解:A、原式=4a2﹣b2,不符合题意;
B、原式=3a3,不符合题意;
C、原式=a4,符合题意;
D、原式=﹣a6b3,不符合题意,
故选C.
8、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
180000=1.8×105,
故选A.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
10、C
【解析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
解得:a=−0.2,b=1.5,c=−2,
即p=−0.2t2+1.5t−2,
当t=−=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
12、1.
【解析】
连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.
【详解】
连接OD,
则∠ODC=90°,∠COD=70°,
∵OA=OD,
∴∠ODA=∠A=∠COD=35°,
∴∠CDA=∠CDO+∠ODA=90°+35°=1°,
故答案为1.
考点:切线的性质.
13、1.
【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=8,AB=CD=6,∠ABC=90°,
∴
∵AO=OC,
∴
∵AO=OC,AM=MD=4,
∴
∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.
故答案为:1.
【点睛】
本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.
14、奇数.
【解析】
根据概率的意义,分n是偶数和奇数两种情况分析即可.
【详解】
若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,
若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,
故答案为:奇数.
【点睛】
本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
15、20
【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
【详解】
=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.
故答案是:20.
【点睛】
解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
16、
【解析】
分析:根据相似三角形的面积比等于相似比的平方求解即可.
详解:∵△ABC∽△A′B′C′,
∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
∴AB:A′B′=1:.
点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
三、解答题(共8题,共72分)
17、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
【解析】
(1)根据统计图即可得出结论;
(2)先计算出优秀的学生,再补齐统计图即可;
(3)根据图2的数值计算即可得出结论.
【详解】
(1)本班有学生:20÷50%=40(名),
本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
答:本班有4名同学优秀;
(2)成绩一般的学生有:40×30%=12(名),
成绩优秀的有4名同学,
补全的条形统计图,如图所示;
(3)3000×50%=1500(名),
答:该校3000人有1500人成绩良好.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
18、(1);(2).
【解析】
(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
(2)根据直线上的点Q(x,y)在直线的下方可得2x-1
相关试卷
这是一份2021-2022学年山东省济南市名校中考押题数学预测卷含解析,共16页。试卷主要包含了如图,已知,,则的度数为等内容,欢迎下载使用。
这是一份2021-2022学年山东省东营市垦利县重点达标名校中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,a的倒数是3,则a的值是,的一个有理化因式是,下列函数是二次函数的是,如图所示,有一条线段是.等内容,欢迎下载使用。
这是一份2021-2022学年湛江市重点名校中考押题数学预测卷含解析,共18页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。