山东省青岛市南区重点名校2021-2022学年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A. B.
C. D.
2.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
3.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )
A.3对 B.4对 C.5对 D.6对
4.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
5.计算-5x2-3x2的结果是( )
A.2x2 B.3x2 C.-8x2 D.8x2
6.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
7.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
8.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
A. B. C. D.
9.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是( )
A.AE=BF B.∠ADE=∠BEF
C.△DEF是等边三角形 D.△BEF是等腰三角形
10.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
12.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.
13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.
14.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.
15.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.
16.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则 AE=_______.
三、解答题(共8题,共72分)
17.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
18.(8分)解方程组: .
19.(8分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
20.(8分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.
21.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).
(1)当时,
①在图1中依题意画出图形,并求(用含的式子表示);
②探究线段,,之间的数量关系,并加以证明;
(2)当时,直接写出线段,,之间的数量关系.
22.(10分)计算:.
23.(12分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
24.如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
【详解】
根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
故选B.
【点睛】
此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
2、A
【解析】
由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
【详解】
①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<2,故正确;
②∵对称轴
∴2a+b=2;故正确;
③∵2a+b=2,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<2,
∴a﹣(﹣2a)+c=3a+c<2,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am2+bm+c≤a+b+c,
所以a+b≥m(am+b)(m为实数).
故正确.
⑤如图,当﹣1<x<3时,y不只是大于2.
故错误.
故选A.
【点睛】
本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
物线与y轴交点,抛物线与y轴交于(2,c).
3、D
【解析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
【详解】
图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
【点睛】
此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
4、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
5、C
【解析】
利用合并同类项法则直接合并得出即可.
【详解】
解:
故选C.
【点睛】
此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
6、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
7、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
8、A
【解析】
试题解析:∵一根圆柱形的空心钢管任意放置,
∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,
∴主视图不可能是.
故选A.
9、D
【解析】
连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
【详解】
连接BD,∵四边形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等边三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正确;
∵∠EDF=60°,
∴△EDF是等边三角形,
∴C正确;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正确.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D错误.
故选D.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
10、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
由题意得:x+(2x+1.82)=50,
故答案为x+(2x+1.82)=50.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
12、
【解析】
先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
【详解】
∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
【点睛】
本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.
13、
【解析】
利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.
【详解】
解:∵直角三角形的两条直角边的长分别为5,12,
∴斜边为=13,
∵三角形的面积=×5×12=×13h(h为斜边上的高),
∴h=.
故答案为:.
【点睛】
考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.
14、20
【解析】
先求出半径为30cm且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.
【详解】
=40π.
设这个圆锥形纸帽的底面半径为r.
根据题意,得40π=2πr,
解得r=20cm.
故答案是:20.
【点睛】
解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.
15、
【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
∵当x=a时,,∴P1的坐标为(a,),
当x=2a时,,∴P2的坐标为(2a,),
……
∴Rt△P1B1P2的面积为,
Rt△P2B2P3的面积为,
Rt△P3B3P4的面积为,
……
∴Rt△Pn-1Bn-1Pn的面积为.
故答案为:
16、5
【解析】
∵BD⊥AC于D,
∴∠ADB=90°,
∴sinA=.
设BD=,则AB=AC=,
在Rt△ABD中,由勾股定理可得:AD=,
∴CD=AC-AD=,
∵在Rt△BDC中,BD2+CD2=BC2,
∴,解得(不合题意,舍去),
∴AB=10,AD=8,BD=6,
∵BE平分∠ABD,
∴,
∴AE=5.
点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.
三、解答题(共8题,共72分)
17、200名初中毕业生的视力情况 200 60 0.05
【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
(3)求出样本中视力正常所占百分比乘以5000即可得解.
【详解】
(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
故答案为200;
(2)a=200×0.3=60,b=10÷200=0.05,
补全频数分布图,如图所示,
故答案为60,0.05;
(3)根据题意得:5000×=3500(人),
则全区初中毕业生中视力正常的学生有估计有3500人.
18、
【解析】
方程组整理后,利用加减消元法求出解即可.
【详解】
解:方程组整理得:
①+②得:9x=-45,即x=-5,
把x=-代入①得:
解得:
则原方程组的解为
【点睛】
本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.
19、7.6 m.
【解析】
利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长
【详解】
解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.
∵在Rt△BDC中,tan∠BDC=.
∴BC=CD=40 m.
∵在Rt△ADC中,tan∠ADC=.
∴.
∴AB≈7.6(m).
答:旗杆AB的高度约为7.6 m.
【点睛】
此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.
20、(1)25π;(2)CD1=,CD2=7
【解析】
分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;
(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.
详解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB是⊙O的直径,
∴AC=8,BC=1,
∴AB=10,
∴⊙O的面积=π×52=25π.
(2)有两种情况:
①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,
作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,
∵CE=,
∴OF= CE=,
∴,
∵=,
∴,
∴,
∴;
②如图所示,当点D位于下半圆中点D2时,
同理可求.
∴CD1=,CD2=7
点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.
21、(1)①;②;(2)
【解析】
(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
【详解】
(1)当时,
①画出的图形如图1所示,
∵为等边三角形,
∴.
∵为等边三角形的中线
∴是的垂直平分线,
∵为线段上的点,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
∴;
②;
如图2,延长到点,使得,连接,作于点.
∵,点在上,
∴.
∵点在的延长线上,,
∴.
∴.
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
即为底角为的等腰三角形.
∴.
∴.
(2)如图3,当时,
在上取一点使,
∵为等边三角形,
∴.
∵为等边三角形的中线,
∵为线段上的点,
∴是的垂直平分线,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
∴.
∴.
【点睛】
此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
22、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
23、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
24、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
【解析】
(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
【详解】
解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
∵OC=1OA,
∴C(0,1);
依题意有:,
解得;
∴y=﹣x2+2x+1.
(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
设P2(x,y),
∵C(0,1),P(2,1),
∴CP=2,
∵D(1,4),
∴CD=<2,
②由①此时CD⊥PD,
根据垂线段最短可得,PC不可能与CD相等;
②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
将y=﹣x2+2x+1代入可得:,
∴ ;
∴P2(,).
综上所述,P(2,1)或(,).
(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
①若Q是直角顶点,由对称性可直接得Q1(1,0);
②若N是直角顶点,且M、N在x轴上方时;
设Q2(x,0)(x<1),
∴MN=2Q1O2=2(1﹣x),
∵△Q2MN为等腰直角三角形;
∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
∵x<1,
∴Q2(,0);
由对称性可得Q1(,0);
③若N是直角顶点,且M、N在x轴下方时;
同理设Q4(x,y),(x<1)
∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
∵y为负,
∴﹣y=2(1﹣x),
∴﹣(﹣x2+2x+1)=2(1﹣x),
∵x<1,
∴x=﹣,
∴Q4(-,0);
由对称性可得Q5(+2,0).
【点睛】
本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
2021-2022学年山东省青岛市中考押题数学预测卷含解析: 这是一份2021-2022学年山东省青岛市中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列二次根式,最简二次根式是,下列运算正确的是,的倒数是等内容,欢迎下载使用。
2021-2022学年山东省青岛市市南区重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年山东省青岛市市南区重点达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年山东省东营市垦利县重点达标名校中考押题数学预测卷含解析: 这是一份2021-2022学年山东省东营市垦利县重点达标名校中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,a的倒数是3,则a的值是,的一个有理化因式是,下列函数是二次函数的是,如图所示,有一条线段是.等内容,欢迎下载使用。