|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析
    立即下载
    加入资料篮
    山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析01
    山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析02
    山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析

    展开
    这是一份山东省青岛42中重点名校2021-2022学年中考数学押题试卷含解析,共22页。试卷主要包含了下列计算正确的是,的相反数是等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(共10小题,每小题3分,共30分)
    1.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )
    A.①B.②C.③D.④
    2.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
    A.B.C.D.
    3.估计的值在( )
    A.0到l之间B.1到2之间C.2到3之间D.3到4之间
    4.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
    A.B.C.D.
    5.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为( )
    A.1B.C.2D.2
    6.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
    A.4π+3B.4π+C.π+D.π+3
    7.下列计算正确的是
    A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
    8.的相反数是( )
    A.B.-C.D.-
    9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )
    A.103块B.104块C.105块D.106块
    10.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
    A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (Ⅰ)AC的长等于_____;
    (Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
    12.反比例函数y = 的图像经过点(2,4),则k的值等于__________.
    13.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.
    14.因式分解______.
    15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________.
    16.若是关于的完全平方式,则__________.
    三、解答题(共8题,共72分)
    17.(8分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.
    18.(8分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
    (1)求此抛物线所对应的函数表达式.
    (2)求PF的长度,用含m的代数式表示.
    (3)当四边形PEDF为平行四边形时,求m的值.
    19.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.
    20.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?
    21.(8分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是 .用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.
    22.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
    23.(12分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
    (1)填空: ;
    (2)如图1,连接,作,垂足为,求的长度;
    (3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?
    24.某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
    (1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
    (2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
    请你根据以上图表提供的信息解答下列问题:
    ①a=_____,b=_____;
    ②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
    ③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。
    2、B
    【解析】
    根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
    【详解】
    ∵B1A2=B1B2,∠A1B1O=α,
    ∴∠A2B2O=α,
    同理∠A3B3O=×α=α,
    ∠A4B4O=α,
    ∴∠AnBnO=α,
    ∴∠A10B10O=,
    故选B.
    【点睛】
    本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
    3、B
    【解析】
    ∵9<11<16,
    ∴,

    故选B.
    4、A
    【解析】
    根据应用题的题目条件建立方程即可.
    【详解】
    解:由题可得:
    即:
    故答案是:A.
    【点睛】
    本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.
    5、B
    【解析】
    由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
    【详解】
    解:∵点F是AC的中点,
    ∴AF=CF=AC,
    ∵将△CDE沿CE折叠到△CFE,
    ∴CD=CF=,DE=EF,
    ∴AC=,
    在Rt△ACD中,AD==1.
    ∵S△ADC=S△AEC+S△CDE,
    ∴×AD×CD=×AC×EF+×CD×DE
    ∴1×=EF+DE,
    ∴DE=EF=1,
    ∴S△AEC=××1=.
    故选B.
    【点睛】
    本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.
    6、A
    【解析】
    连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
    【详解】
    如下图,连AC,OC,BC,设CD交AB于H,
    ∵CD垂直平分线段OB,
    ∴CO=CB,
    ∵OC=OB,
    ∴OC=OB=BC,
    ∴,
    ∵AB是直径,
    ∴,
    ∴,
    ∵,
    ∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
    ∵MA=MH,

    ∴,
    ∵,
    ∴CF扫过的面积为,
    故选:A.
    【点睛】
    本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
    7、B
    【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
    【详解】A. a2·a2=a4 ,故A选项错误;
    B. (-a2)3=-a6 ,正确;
    C. 3a2-6a2=-3a2 ,故C选项错误;
    D. (a-2)2=a2-4a+4,故D选项错误,
    故选B.
    【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
    8、B
    【解析】
    ∵+(﹣)=0,
    ∴的相反数是﹣.
    故选B.
    9、C
    【解析】
    试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,
    550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块
    考点:一元一次不等式的应用
    10、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1100万=11000000=1.1×107.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、5 见解析.
    【解析】
    (1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.
    【详解】
    (1)AC=;
    (2)如图,连接格点M和N,由图可知:
    AB=AM=4,
    BC=AN=,
    AC=MN=,
    ∴△ABC≌△MAN,
    ∴∠AMN=∠BAC,
    ∴∠MAD+∠CAB=∠MAD+∠AMN=90°,
    ∴MN⊥AC,
    易解得△MAN以MN为底时的高为,
    ∵AB2=AD•AC,
    ∴AD=AB2÷AC=,
    综上可知,MN与AC的交点即为所求D点.
    【点睛】
    本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.
    12、1
    【解析】
    解:∵点(2,4)在反比例函数的图象上,∴,即k=1.故答案为1.
    点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.
    13、5
    【解析】
    本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
    【详解】
    解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
    连接OC,交AB于D点.连接OA.
    ∵尺的对边平行,光盘与外边缘相切,
    ∴OC⊥AB.
    ∴AD=4cm.
    设半径为Rcm,则R2=42+(R-2)2,
    解得R=5,
    ∴该光盘的半径是5cm.
    故答案为5
    【点睛】
    此题考查了切线的性质及垂径定理,建立数学模型是关键.
    14、a(3a+1)
    【解析】
    3a2+a=a(3a+1),
    故答案为a(3a+1).
    15、1
    【解析】
    试题解析:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;
    设圆心为Q,切点为H、E,连接QH、QE.
    ∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,
    ∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
    QH⊥AC,QE⊥BC,∠ACB=90°,
    ∴四边形HQEC是正方形,
    ∵半径为(1-2)的圆内切于△ABC,
    ∴DO=CD,
    ∵HQ2+HC2=QC2,
    ∴2HQ2=QC2=2×(1-2)2,
    ∴QC2=18-32=(1-1)2,
    ∴QC=1-1,
    ∴CD=1-1+(1-2)=2,
    ∴DO=2,
    ∵NO2+DN2=DO2=(2)2=8,
    ∴2NO2=8,
    ∴NO2=1,
    ∴DN×NO=1,
    即:xy=k=1.
    【点睛】此题主要考查了正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=1是解决问题的关键.
    16、1或-1
    【解析】
    【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
    详解:∵x2+2(m-3)x+16是关于x的完全平方式,
    ∴2(m-3)=±8,
    解得:m=-1或1,
    故答案为-1或1.
    点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
    三、解答题(共8题,共72分)
    17、(1)矩形的周长为4m;(2)矩形的面积为1.
    【解析】
    (1)根据题意和矩形的周长公式列出代数式解答即可.
    (2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
    【详解】
    (1)矩形的长为:m﹣n,
    矩形的宽为:m+n,
    矩形的周长为:2[(m-n)+(m+n)]=4m;
    (2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
    当m=7,n=4时,S=72-42=1.
    【点睛】
    本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
    18、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
    (1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
    【详解】
    解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
    ∴,解得,
    此抛物线所对应的函数表达式y=-x2+2x+1;
    (2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴C(0,1).
    设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
    ,解得,
    即BC的函数解析式为y=-x+1.
    由P在BC上,F在抛物线上,得
    P(m,-m+1),F(m,-m2+2m+1).
    PF=-m2+2m+1-(-m+1)=-m2+1m.
    (1)如图

    ∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴D(1,4).
    ∵线段BC与抛物线的对称轴交于点E,
    当x=1时,y=-x+1=2,
    ∴E(1,2),
    ∴DE=4-2=2.
    由四边形PEDF为平行四边形,得
    PF=DE,即-m2+1m=2,
    解得m1=1,m2=2.
    当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
    当m=2时,四边形PEDF为平行四边形.
    考点:二次函数综合题.
    19、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    20、450m.
    【解析】
    若要使A、C、E三点共线,则三角形BDE是以∠E为直角的三角形,利用三角函数即可解得DE的长.
    【详解】
    解:,,

    在中,,,


    答:另一边开挖点离,正好使,,三点在一直线上.
    【点睛】
    本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.
    21、(1);(2).
    【解析】
    【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;
    (2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.
    【详解】(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,
    ∴从四份听力材料中,任选一份是难的听力材料的概率是=,
    故答案为;
    (2)树状图如下:
    ∴P(两份材料都是难)=.
    【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    22、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
    【解析】
    (1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
    (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
    【详解】
    解:∵B(2,﹣4)在反比例函数y=的图象上,
    ∴m=2×(﹣4)=﹣8,
    ∴反比例函数解析式为:y=﹣,
    把A(﹣4,n)代入y=﹣,
    得﹣4n=﹣8,解得n=2,
    则A点坐标为(﹣4,2).
    把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
    得,解得,
    ∴一次函数的解析式为y=﹣x﹣2;
    (2)∵y=﹣x﹣2,
    ∴当﹣x﹣2=0时,x=﹣2,
    ∴点C的坐标为:(﹣2,0),
    △AOB的面积=△AOC的面积+△COB的面积
    =×2×2+×2×4
    =6;
    (3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
    【点睛】
    本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
    23、(1)1;(2);(3)x时,y有最大值,最大值.
    【解析】
    (1)只要证明△OBC是等边三角形即可;
    (2)求出△AOC的面积,利用三角形的面积公式计算即可;
    (3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    【详解】
    (1)由旋转性质可知:OB=OC,∠BOC=1°,
    ∴△OBC是等边三角形,
    ∴∠OBC=1°.
    故答案为1.
    (2)如图1中.
    ∵OB=4,∠ABO=30°,
    ∴OAOB=2,ABOA=2,
    ∴S△AOC•OA•AB2×2.
    ∵△BOC是等边三角形,
    ∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC,
    ∴OP.
    (3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
    则NE=ON•sin1°x,
    ∴S△OMN•OM•NE1.5xx,
    ∴yx2,
    ∴x时,y有最大值,最大值.
    ②当x≤4时,M在BC上运动,N在OB上运动.
    作MH⊥OB于H.
    则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
    ∴yON×MHx2+2x.
    当x时,y取最大值,y,
    ③当4<x≤4.8时,M、N都在BC上运动,
    作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
    ∴y•MN•OG=12x,
    当x=4时,y有最大值,最大值=2.
    综上所述:y有最大值,最大值为.
    【点睛】
    本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    24、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
    【解析】
    (1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
    (2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
    【详解】
    (1)∵调查的人数较多,范围较大,
    ∴应当采用随机抽样调查,
    ∵到六年级每个班随机调查一定数量的同学相对比较全面,
    ∴丙同学的说法最合理.
    (2)①∵喜欢书画类的有20人,频率为0.20,
    ∴a=20÷0.20=100,
    b=15÷100=0.15;
    ②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
    ∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
    ③喜欢武术类的人数为:560×0.25=140人.
    【点睛】
    本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    类别
    频数(人数)
    频率
    武术类

    0.25
    书画类
    20
    0.20
    棋牌类
    15
    b
    器乐类


    合计
    a
    1.00
    相关试卷

    2022届山东省青岛39中重点达标名校中考数学押题试卷含解析: 这是一份2022届山东省青岛39中重点达标名校中考数学押题试卷含解析,共18页。试卷主要包含了方程=的解为,下列运算正确的是等内容,欢迎下载使用。

    2022届山东省冠县重点达标名校中考数学押题试卷含解析: 这是一份2022届山东省冠县重点达标名校中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    2021-2022学年山东省青岛42中重点名校中考数学仿真试卷含解析: 这是一份2021-2022学年山东省青岛42中重点名校中考数学仿真试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列判断错误的是,若分式有意义,则的取值范围是,若正比例函数y=mx等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map