|试卷下载
终身会员
搜索
    上传资料 赚现金
    内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析01
    内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析02
    内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析

    展开
    这是一份内蒙古乌兰浩特市第十三中学2021-2022学年中考数学最后一模试卷含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,《九章算术》中有这样一个问题,的相反数是等内容,欢迎下载使用。

    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )
    A.点AB.点BC.点CD.点D
    2.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③B.①③⑤C.②③④D.②④⑤
    3.一元二次方程x2+2x﹣15=0的两个根为( )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    4.如图,在▱ABCD中,AB=1,AC=4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为( )
    A.2B.3C.4D.6
    5.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为( )
    A.0.25×1010 B.2.5×1010 C.2.5×109 D.25×108
    6.下列说法正确的是( )
    A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件
    B.明天下雪的概率为,表示明天有半天都在下雪
    C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.了解一批充电宝的使用寿命,适合用普查的方式
    7.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
    .问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为( )
    A.B.
    C.D.
    8.半径为的正六边形的边心距和面积分别是( )
    A.,B.,
    C.,D.,
    9.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
    A.B.C.D.
    10.的相反数是
    A.4B.C.D.
    11.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
    A.B.C.D.3
    12.下列由左边到右边的变形,属于因式分解的是( ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
    连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.
    14.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.
    15.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.
    16.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.
    17.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.
    18.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
    20.(6分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
    (1)求抛物线的表达式;
    (2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
    (3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.
    21.(6分)△ABC在平面直角坐标系中的位置如图所示.
    画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
    22.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
    (1)如图1,当0<t<2时,求证:DF∥CB;
    (2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
    (3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
    23.(8分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.
    (1)若a=1,求反比例函数的解析式及b的值;
    (2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
    (3)若a﹣b=4,求一次函数的函数解析式.
    24.(10分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
    (1)求证:四边形ABED是菱形;
    (2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
    25.(10分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
    若AC=OD,求a、b的值;若BC∥AE,求BC的长.
    26.(12分)解方程:x2-4x-5=0
    27.(12分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:
    (1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
    (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
    2、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.
    3、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    4、C
    【解析】
    利用平行四边形的性质得出△ADF∽△EBF,得出=,再根据勾股定理求出BO的长,进而得出答案.
    【详解】
    解:∵在□ABCD中,对角线AC、BD相交于O,
    ∴BO=DO,AO=OC,AD∥BC,
    ∴△ADF∽△EBF,
    ∴=,
    ∵AC=4,
    ∴AO=2,
    ∵AB=1,AC⊥AB,
    ∴BO===3,
    ∴BD=6,
    ∵E是BC的中点,
    ∴==,
    ∴BF=2, FD=4.
    故选C.
    【点睛】
    本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.
    5、C
    【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【详解】2500000000的小数点向左移动9位得到2.5,
    所以2500000000用科学记数表示为:2.5×1.
    故选C.
    【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、C
    【解析】
    根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.
    【详解】
    A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;
    B. “明天下雪的概率为”,表示明天有可能下雪,错误;
    C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;
    D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;
    故选:C
    【点睛】
    考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.
    7、A
    【解析】
    设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.
    【详解】
    解:设甲的钱数为x,乙的钱数为y,
    依题意,得:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
    8、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,
    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
    9、C
    【解析】
    画树状图得:
    ∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
    ∴两次抽取的卡片上的数字之积为正偶数的概率是:.
    故选C.
    【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
    10、A
    【解析】
    直接利用相反数的定义结合绝对值的定义分析得出答案.
    【详解】
    -1的相反数为1,则1的绝对值是1.
    故选A.
    【点睛】
    本题考查了绝对值和相反数,正确把握相关定义是解题的关键.
    11、B
    【解析】
    根据勾股定理和三角函数即可解答.
    【详解】
    解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
    设a=x,则c=3x,b==2x.
    即tanA==.
    故选B.
    【点睛】
    本题考查勾股定理和三角函数,熟悉掌握是解题关键.
    12、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    【点睛】
    本题考查了因式分解的定义,牢记定义是解题关键.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    (1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
    (2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
    【详解】
    (1),

    当O,D,C共线时,OC取最大值,此时OD⊥AB.
    ∵,
    ∴△AOB为等腰直角三角形,
    ∴ ;
    (2)∵BC=AC,CD为AB边的高,
    ∴∠ADC=90°,BD=DA=AB=4,
    ∴CD==3,
    当AC∥y轴时,∠ABO=∠CAB,
    ∴Rt△ABO∽Rt△CAD,
    ∴,即,
    解得,t=,
    当BC∥x轴时,∠BAO=∠CBD,
    ∴Rt△ABO∽Rt△BCD,
    ∴,即,
    解得,t= ,
    则当t=或时,△ABC的边与坐标轴平行.
    故答案为t=或.
    【点睛】
    本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
    14、
    【解析】
    先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.
    【详解】
    解:∵∠ACB=45°,∠BCB′=75°,
    ∴∠ACB′=120°,
    ∴∠ACO=60°,
    ∴∠OAC=30°,
    ∴AC=2OC,
    ∵点C的坐标为(1,0),
    ∴OC=1,
    ∴AC=2OC=2,
    ∵△ABC是等腰直角三角形,
    ∴B′点的坐标为
    【点睛】
    此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.
    15、72°.
    【解析】
    解:∵OB=OC,∠OBC=18°,
    ∴∠BCO=∠OBC=18°,
    ∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,
    ∴∠A=∠BOC=×144°=72°.
    故答案为 72°.
    【点睛】
    本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.
    16、1:1
    【解析】
    根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
    【详解】
    连接HF,
    ∵四边形ABCD为矩形,
    ∴AD=BC,AD∥BC,∠D=90°
    ∵H、F分别为AD、BC边的中点,
    ∴DH=CF,DH∥CF,
    ∵∠D=90°,
    ∴四边形HFCD是矩形,
    ∴△HFG的面积是CD×DH=S矩形HFCD,
    即S△HFG=S△DHG+S△CFG,
    同理S△HEF=S△BEF+S△AEH,
    ∴图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,
    故答案为1:1.
    【点睛】
    本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.
    17、
    【解析】
    分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.
    详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,
    则OD=MN,DN=OM,∠AMO=∠BNA=90°,
    ∴∠AOM+∠OAM=90°,
    ∵∠AOB=∠OBA=45°,
    ∴OA=BA,∠OAB=90°,
    ∴∠OAM+∠BAN=90°,
    ∴∠AOM=∠BAN,
    ∴△AOM≌△BAN,
    ∴AM=BN=1,OM=AN=k,
    ∴OD=1+k,BD=OM﹣BN=k﹣1
    ∴B(1+k,k﹣1),
    ∵双曲线y=(x>0)经过点B,
    ∴(1+k)•(k﹣1)=k,
    整理得:k2﹣k﹣1=0,
    解得:k=(负值已舍去),
    故答案为.
    点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.
    【详解】
    请在此输入详解!
    18、
    【解析】
    第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
    【详解】
    解:∵菱形ABCD中,AB=4,∠C=60°,
    ∴△ABD是等边三角形, BO=DO=2,
    AO==,
    第一次旋转的弧长=,
    ∵第一、二次旋转的弧长和=+=,
    第三次旋转的弧长为:,
    故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
    故答案为:.
    【点睛】
    本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.
    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    20、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
    【解析】
    (1)将点B坐标代入解析式求得a的值即可得;
    (2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
    ==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
    (3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
    【详解】
    解:(1)把点B(-,2)代入y=a(x-)2-2,
    解得a=1,
    ∴抛物线的表达式为y=(x-)2-2,
    (2)由y=(x-)2-2知A(,-2),
    设直线AB表达式为y=kx+b,代入点A,B的坐标得,
    解得,
    ∴直线AB的表达式为y=-2x-1,
    易求E(0,-1),F(0,-),M(-,0),
    若∠OPM=∠MAF,
    ∴OP∥AF,
    ∴△OPE∽△FAE,
    ∴,
    ∴OP=FA= ,
    设点P(t,-2t-1),则,
    解得t1=-,t2=-,
    由对称性知,当t1=-时,也满足∠OPM=∠MAF,
    ∴t1=-,t2=-都满足条件,
    ∵△POE的面积=OE·|t|,
    ∴△POE的面积为或;
    (3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,
    设Q(a,-2a-1),则NE=-a,QN=-2a.
    由翻折知QN′=QN=-2a,N′E=NE=-a,
    由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
    ∴==,即===2,
    ∴QR=2,ES= ,
    由NE+ES=NS=QR可得-a+=2,
    解得a=-,
    ∴Q(-,),
    如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(-,2),
    如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
    设NE=a,则N′E=a.
    易知RN′=2,SN′=1,QN′=QN=3,
    ∴QR=,SE=-a.
    在Rt△SEN′中,(-a)2+12=a2,
    解得a=,
    ∴Q(,2).
    综上,点Q的坐标为(-,)或(-,2)或(,2).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
    21、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
    【解析】
    (1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
    (2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
    (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
    【详解】
    (1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
    (2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
    (1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
    【点睛】
    本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    22、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
    (2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
    (3)分为两种情况:根据三角形面积公式求出即可.
    【详解】
    (1)证明:如图1.
    ∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
    ∴∠AOB=90°.
    ∵DP⊥AB于点P,
    ∴∠DPB=90°,
    ∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
    ∴∠PBO+∠PDO=180°,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠PBO,∠ODF=∠PDO,
    ∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
    ∵在△FDO中,∠OFD+∠ODF=90°,
    ∴∠CBO=∠DFO,
    ∴DF∥CB.
    (2)直线DF与CB的位置关系是:DF⊥CB,
    证明:延长DF交CB于点Q,如图2,
    ∵在△ABO中,∠AOB=90°,
    ∴∠BAO+∠ABO=90°,
    ∵在△APD中,∠APD=90°,
    ∴∠PAD+∠PDA=90°,
    ∴∠ABO=∠PDA,
    ∵BC平分∠ABO,DF平分∠PDO,
    ∴∠CBO=∠ABO,∠CDQ=∠PDO,
    ∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
    ∴∠CDQ+∠DCQ=90°,
    ∴在△QCD中,∠CQD=90°,
    ∴DF⊥CB.
    (3)解:过M作MN⊥y轴于N,
    ∵M(4,-1),
    ∴MN=4,ON=1,
    当E在y轴的正半轴上时,如图3,
    ∵△MCE的面积等于△BCO面积的倍时,
    ∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
    解得:OE=,
    当E在y轴的负半轴上时,如图4,
    ×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
    解得:OE=,
    即E的坐标是(0,)或(0,-).
    【点睛】
    本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
    23、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
    【解析】
    (1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
    【详解】
    (1)若a=1,则A(1,4),
    设反比例函数的解析式为y=(k≠0),
    ∵点A在反比例函数的图象上,
    ∴4=,
    解得k=4,
    ∴反比例函数解析式为y=;
    ∵点B(﹣4,b)在反比例函数的图象上,
    ∴b==﹣1,
    即反比例函数的解析式为y=,b的值为﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),
    根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
    ∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
    ∴,即,
    ①+②得4a﹣4b=1p,
    ∵a﹣b=4,
    ∴16=1p,
    解得p=8,
    把p=8代入①得4a=8,代入②得﹣4b=8,
    解得a=1,b=﹣1,
    ∴A(1,4),B(﹣4,﹣1),
    ∵点A、点B在一次函数y=mx+n图象上,

    解得
    ∴一次函数的解析式为y=x+1.
    【点睛】
    本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
    24、见解析
    【解析】
    试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
    (2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
    试题解析:梯形ABCD中,AD∥BC,
    ∴四边形ABED是平行四边形,
    又AB=AD,
    ∴四边形ABED是菱形;
    (2)∵四边形ABED是菱形,∠ABC=60°,
    ∴∠DEC=60°,AB=ED,
    又EC=2BE,
    ∴EC=2DE,
    ∴△DEC是直角三角形,
    考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定
    25、(1)a=,b=2;(2)BC=.
    【解析】
    试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
    试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
    ∴k=4,则y=,
    ∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
    ∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
    ∵点A在y=的图象上,∴A点的坐标为:(,3),
    ∵一次函数y=ax+b的图象经过点A、D,
    ∴,
    解得:,b=2;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
    ∵BD∥CE,且BC∥DE,
    ∴四边形BCED为平行四边形,
    ∴CE=BD=2,
    ∵BD∥CE,∴∠ADF=∠AEC,
    ∴在Rt△AFD中,tan∠ADF=,
    在Rt△ACE中,tan∠AEC=,
    ∴=,
    解得:m=1,
    ∴C点的坐标为:(1,0),则BC=.
    考点:反比例函数与一次函数的交点问题.
    26、x1 ="-1," x2 =5
    【解析】
    根据十字相乘法因式分解解方程即可.
    27、(1)30;;(2).
    【解析】
    试题分析:(1)根据题意列式求值,根据相应数据画图即可;
    (2)根据题意列表,然后根据表中数据求出概率即可.
    解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
    答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
    故答案为30,144°;
    补全统计图如图所示:
    (2)根据题意列表如下:
    设竖列为小红抽取的跑道,横排为小花抽取的跑道,
    记小红和小花抽在相邻两道这个事件为A,
    ∴.
    考点:列表法与树状图法;扇形统计图;利用频率估计概率.
    相关试卷

    内蒙古呼伦贝尔市根河市阿龙山中学2021-2022学年中考数学最后一模试卷含解析: 这是一份内蒙古呼伦贝尔市根河市阿龙山中学2021-2022学年中考数学最后一模试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,若点A,6的相反数为,定义运算等内容,欢迎下载使用。

    2022届内蒙古乌兰浩特市第十三中学中考三模数学试题含解析: 这是一份2022届内蒙古乌兰浩特市第十三中学中考三模数学试题含解析,共15页。试卷主要包含了下列计算正确的是,﹣的相反数是等内容,欢迎下载使用。

    2021-2022学年重庆巴蜀中学中考数学最后一模试卷含解析: 这是一份2021-2022学年重庆巴蜀中学中考数学最后一模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,的一个有理化因式是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map