内蒙古呼伦贝尔市根河市阿龙山中学2021-2022学年中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )
A. B. C. D.π
2.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
3.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
4.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A. B.
C. D.
5.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 B. C. D.3
6.6的相反数为
A.-6 B.6 C. D.
7.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为( )
A.0 B.2 C.4m D.-4m
8.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为
A.12 B.20 C.24 D.32
9.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
10.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值( )
A.总不小于1 B.总不小于11
C.可为任何实数 D.可能为负数
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
12.的相反数是______,的倒数是______.
13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
14.若点与点关于原点对称,则______.
15.________.
16.阅读下面材料:
数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”
小艾的作法如下:
(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
(3)两弧分别交于点P和点M
(4)连接PM,与直线l交于点Q,直线PQ即为所求.
老师表扬了小艾的作法是对的.
请回答:小艾这样作图的依据是_____.
17.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
三、解答题(共7小题,满分69分)
18.(10分)解不等式组: ,并写出它的所有整数解.
19.(5分)计算:.
20.(8分)先化简,再求值:,其中a为不等式组的整数解.
21.(10分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.
22.(10分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
23.(12分)化简:(x-1- )÷.
24.(14分)解不等式组并写出它的整数解.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题解析:如图,
∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
∴BC=ACtan60°=1×=,AB=2
∴S△ABC=AC•BC=.
根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
=
=.
故选A.
考点:1.扇形面积的计算;2.旋转的性质.
2、D
【解析】
根据抛物线的图象与系数的关系即可求出答案.
【详解】
解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;
令x=3,y>0,∴9a+3b+c>0,故②正确;
∵OA=OC<1,∴c>﹣1,故③正确;
∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.
∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;
∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,
∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,
即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.
故选D.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.
3、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
4、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
5、D
【解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
故选D.
【点睛】
本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
6、A
【解析】
根据相反数的定义进行求解.
【详解】
1的相反数为:﹣1.故选A.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.
7、A
【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b用新定义运算展开整理后代入进行求解即可.
【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,
∴a+b=-1,
∵定义运算:a⋆b=2ab,
∴(a+1)⋆a -(b+1)⋆b
=2a(a+1)-2b(b+1)
=2a2+2a-2b2-2b
=2(a+b)(a-b)+2(a-b)
=-2(a-b)+2(a-b)=0,
故选A.
【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.
8、D
【解析】
如图,过点C作CD⊥x轴于点D,
∵点C的坐标为(3,4),∴OD=3,CD=4.
∴根据勾股定理,得:OC=5.
∵四边形OABC是菱形,∴点B的坐标为(8,4).
∵点B在反比例函数(x>0)的图象上,
∴.
故选D.
9、C
【解析】
【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
【详解】观察直方图,由图可知:
A. 最喜欢足球的人数最多,故A选项错误;
B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
故选C.
【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
10、A
【解析】
利用配方法,根据非负数的性质即可解决问题;
【详解】
解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.
【点睛】
本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.
二、填空题(共7小题,每小题3分,满分21分)
11、1 或 0 或
【解析】
分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
【详解】
解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
(2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
于是△=4﹣4(m﹣1)m>0,
解得,(m﹣)2<,
解得 m< 或 m> .
将(0,0)代入解析式得,m=0,符合题意.
(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
这时:△=4﹣4(m﹣1)m=0,
解得:m= .
故答案为1 或 0 或.
【点睛】
此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
12、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
13、(0,0)
【解析】
根据坐标的平移规律解答即可.
【详解】
将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,
那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),
故答案为(0,0).
【点睛】
此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
14、1
【解析】
∵点P(m,﹣2)与点Q(3,n)关于原点对称,
∴m=﹣3,n=2,
则(m+n)2018=(﹣3+2)2018=1,
故答案为1.
15、1
【解析】
先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
【详解】
解:原式=2×=1.
故答案为1.
【点睛】
本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
16、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一
【解析】
从作图方法以及作图结果入手考虑其作图依据..
【详解】
解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.
【点睛】
本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.
17、 (-1,0)
【解析】
根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
解:如图所示
∵正方形OBB1C,
∴OB1=,B1所在的象限为第一象限;
∴OB2=()2,B2在x轴正半轴;
∴OB3=()3,B3所在的象限为第四象限;
∴OB4=()4,B4在y轴负半轴;
∴OB5=()5,B5所在的象限为第三象限;
∴OB6=()6=1,B6在x轴负半轴.
∴B6(-1,0).
故答案为(-1,0).
三、解答题(共7小题,满分69分)
18、﹣2,﹣1,0,1,2;
【解析】
首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.
【详解】
解:解不等式(1),得
解不等式(2),得x≤2
所以不等式组的解集:-3<x≤2
它的整数解为:-2,-1,0,1,2
19、.
【解析】
利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.
【详解】
解:原式=
= .
故答案为 .
【点睛】
本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.
20、,1
【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
【详解】
解:原式=[﹣]
=
=,
∵不等式组的解为<a<5,其整数解是2,3,4,
a不能等于0,2,4,
∴a=3,
当a=3时,原式==1.
【点睛】
本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
21、见解析
【解析】
根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
【详解】
解:∵CE∥DF
∴∠ECA=∠FDB,
在△ECA和△FDB中
∴△ECA≌△FDB,
∴AE=FB.
【点睛】
本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
22、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
23、
【解析】
根据分式的混合运算先计算括号里的再进行乘除.
【详解】
(x-1- )÷
=·
=·
=
【点睛】
此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.
24、不等式组的解集是5<x≤1,整数解是6,1
【解析】
先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
【详解】
∵解①得:x>5,
解不等式②得:x≤1,
∴不等式组的解集是5<x≤1,
∴不等式组的整数解是6,1.
【点睛】
本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
2023-2024学年内蒙古呼伦贝尔市根河市阿龙山中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年内蒙古呼伦贝尔市根河市阿龙山中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在下列命题中,真命题是,抛物线y=等内容,欢迎下载使用。
内蒙古呼伦贝尔市根河市阿龙山中学2023-2024学年八上数学期末复习检测试题含答案: 这是一份内蒙古呼伦贝尔市根河市阿龙山中学2023-2024学年八上数学期末复习检测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,在矩形个,关于的一元二次方程的根的情况等内容,欢迎下载使用。
2022-2023学年内蒙古呼伦贝尔市根河市阿龙山中学七下数学期末调研试题含答案: 这是一份2022-2023学年内蒙古呼伦贝尔市根河市阿龙山中学七下数学期末调研试题含答案,共6页。