2022届内蒙古根河市阿龙山中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
2. “车辆随机到达一个路口,遇到红灯”这个事件是( )
A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
3.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
4.下列图形中一定是相似形的是( )
A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
5.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )
A.2:5 B.2:3 C.3:5 D.3:2
6.下列计算正确的是( )
A.x2x3=x6 B.(m+3)2=m2+9
C.a10÷a5=a5 D.(xy2)3=xy6
7.下列实数中,最小的数是( )
A. B. C.0 D.
8.计算3–(–9)的结果是( )
A.12 B.–12 C.6 D.–6
9.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是( )
A.2 B.4 C. D.2
10.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
12.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
13.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
14.化简:= .
15.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.
16.抛物线(为非零实数)的顶点坐标为_____________.
17.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
三、解答题(共7小题,满分69分)
18.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.
19.(5分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
20.(8分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
21.(10分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
(1)求证:直线AB是⊙O的切线;
(2)求证:△GOC∽△GEF;
(3)若AB=4BD,求sinA的值.
22.(10分)解不等式 ,并把它的解集表示在数轴上.
23.(12分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.
(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;
(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.
图① 图② 图③
24.(14分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
【点睛】
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
2、B
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
“车辆随机到达一个路口,遇到红灯”是随机事件.
故选:.
【点睛】
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
4、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
5、B
【解析】
∵四边形ABCD是平行四边形,
∴AB∥CD
∴∠EAB=∠DEF,∠AFB=∠DFE
∴△DEF∽△BAF
∴
∵,
∴DE:AB=2:5
∵AB=CD,
∴DE:EC=2:3
故选B
6、C
【解析】
根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.
【详解】
x2•x3=x5,故选项A不合题意;
(m+3)2=m2+6m+9,故选项B不合题意;
a10÷a5=a5,故选项C符合题意;
(xy2)3=x3y6,故选项D不合题意.
故选:C.
【点睛】
本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.
7、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵<-2<0<,
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
8、A
【解析】
根据有理数的减法,即可解答.
【详解】
故选A.
【点睛】
本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
反数.
9、D
【解析】
连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
【详解】
连接CO,∵AB平分CD,
∴∠COB=∠DOB,AB⊥CD,CE=DE=2
∵∠A与∠DOB互余,
∴∠A+∠COB=90°,
又∠COB=2∠A,
∴∠A=30°,∠COE=60°,
∴∠OCE=30°,
设OE=x,则CO=2x,
∴CO2=OE2+CE2
即(2x)2=x2+(2)2
解得x=2,
∴BO=CO=4,
∴BE=CO-OE=2.
故选D.
【点睛】
此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.
10、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
【点睛】
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据多边形的内角和定理:180°•(n-2)求解即可.
【详解】
由题意可得:180°•(n-2)=150°•n,
解得n=1.
故多边形是1边形.
12、8个
【解析】
根据概率公式结合取出红球的概率即可求出袋中小球的总个数.
【详解】
袋中小球的总个数是:2÷=8(个).
故答案为8个.
【点睛】
本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.
13、
【解析】
试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
∴P(飞镖落在白色区域)=.
14、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴=2.
【点睛】
本题考查求算术平方根,熟记定义是关键.
15、1
【解析】
分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.
详解:设∠AEF=n°,
由题意,解得n=120,
∴∠AEF=120°,
∴∠FED=60°,
∵四边形ABCD是矩形,
∴BC=AD,∠D=90°,
∴∠EFD=10°,
∴DE=EF=1,
∴BC=AD=2+1=1,
故答案为1.
点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、
【解析】
【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.
【详解】y=mx2+2mx+1
=m(x2+2x)+1
=m(x2+2x+1-1)+1
=m(x+1)2 +1-m,
所以抛物线的顶点坐标为(-1,1-m),
故答案为(-1,1-m).
【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.
17、-1.
【解析】
观察规律即可解题.
【详解】
解:第一行=12=1,第二行=22=4,第三行=32=9...
∴第n行=n2,第11行=112=121,
又∵左起第一个数比右侧的数大一,
∴第11行左起第一个数是-1.
【点睛】
本题是一道规律题,属于简单题,认真审题找到规律是解题关键.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)CD =;(3)见解析;(4)
【解析】
试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
(2)结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°= AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.
试题解析:
迁移应用:(1)证明:如图2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)结论:CD=AD+BD.
理由:如图2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD•cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等边三角形,
∴BA=BD=BC,
∵E、C关于BM对称,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四点共圆,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,FH=3,
在Rt△BHF中,∵∠BFH=30°,
∴ =cos30°,
∴BF=.
19、 (1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).
【解析】
(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;
(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;
②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出 直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.
【详解】
解:(1)将点A、B坐标代入二次函数表达式得:,
解得:,
故抛物线的表达式为:y=x2+6x+5…①,
令y=0,则x=﹣1或﹣5,
即点C(﹣1,0);
(2)①如图1,过点P作y轴的平行线交BC于点G,
将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=x+1…②,
设点G(t,t+1),则点P(t,t2+6t+5),
S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,
∵-<0,
∴S△PBC有最大值,当t=﹣时,其最大值为;
②设直线BP与CD交于点H,
当点P在直线BC下方时,
∵∠PBC=∠BCD,
∴点H在BC的中垂线上,
线段BC的中点坐标为(﹣,﹣),
过该点与BC垂直的直线的k值为﹣1,
设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:
直线BC中垂线的表达式为:y=﹣x﹣4…③,
同理直线CD的表达式为:y=2x+2…④,
联立③④并解得:x=﹣2,即点H(﹣2,﹣2),
同理可得直线BH的表达式为:y=x﹣1…⑤,
联立①⑤并解得:x=﹣或﹣4(舍去﹣4),
故点P(﹣,﹣);
当点P(P′)在直线BC上方时,
∵∠PBC=∠BCD,∴BP′∥CD,
则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,
即直线BP′的表达式为:y=2x+5…⑥,
联立①⑥并解得:x=0或﹣4(舍去﹣4),
故点P(0,5);
故点P的坐标为P(﹣,﹣)或(0,5).
【点睛】
本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.
20、 (1)3;(2) x﹣y,1.
【解析】
(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
=3×+2-+3-1-1,
=+2−+3-1-1,
=3;
(2)(x﹣)÷,
=,
=
=x-y,
当x=,y=-1时,原式=−+1=1.
【点睛】
本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
21、 (1)见解析;(2)见解析;(3).
【解析】
(1)利用等腰三角形的性质,证明OC⊥AB即可;
(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
(3)根据勾股定理和三角函数解答即可.
【详解】
证明:(1)∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切线.
(2)∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴,
∵OD=OC,
∴OD•EG=OG•EF.
(3)∵AB=4BD,
∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
即(r+m)2=r2+(2m)2,
解得:r=1.5m,OB=2.5m,
∴sinA=sinB=.
【点睛】
考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
22、x<5;数轴见解析
【解析】
【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
【详解】移项,得 ,
去分母,得 ,
移项,得,
∴不等式的解集为,
在数轴上表示如图所示:
【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
23、(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.
【解析】
试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;
(2)延长交的延长线于点由全等三角形的对应边相等验证关系.
试题解析:(1)图②结论:
证明:作,的延长线交于点.
∵四边形是矩形,
由是中点,可证≌
(2)图③结论:
延长交的延长线于点如图所示
因为四边形是平行四边形
所以//且,
因为为的中点,所以也是的中点,
所以
又因为
所以
又因为
所以≌
所以
因为
24、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
2023-2024学年内蒙古呼伦贝尔市根河市阿龙山中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年内蒙古呼伦贝尔市根河市阿龙山中学九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在下列命题中,真命题是,抛物线y=等内容,欢迎下载使用。
内蒙古根河市阿龙山中学2022-2023学年数学七下期末调研试题含答案: 这是一份内蒙古根河市阿龙山中学2022-2023学年数学七下期末调研试题含答案,共7页。
2022-2023学年内蒙古呼伦贝尔市根河市阿龙山中学七下数学期末调研试题含答案: 这是一份2022-2023学年内蒙古呼伦贝尔市根河市阿龙山中学七下数学期末调研试题含答案,共6页。