辽宁省大连市甘井子区达标名校2022年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1. 的相反数是( )
A.﹣ B. C. D.2
2.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
3.如图所示的几何体的左视图是( )
A. B. C. D.
4.sin60°的值为( )
A. B. C. D.
5.数据”1,2,1,3,1”的众数是( )
A.1 B.1.5 C.1.6 D.3
6.运用乘法公式计算(4+x)(4﹣x)的结果是( )
A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
7.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )
A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
8.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( )
A.30° B.35° C.40° D.50°
9.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A. B. C. D.
10.点P(1,﹣2)关于y轴对称的点的坐标是( )
A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.
12.若,则=_____.
13.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
14.函数,当x<0时,y随x的增大而_____.
15.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数,计算得;
第二步:算出的各位数字之和得,计算得;
第三步:算出的各位数字之和得,再计算得;
依此类推,则____________
16.分解因式:x3y﹣2x2y+xy=______.
三、解答题(共8题,共72分)
17.(8分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
18.(8分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈,cos76°≈,tan 76°≈4,sin53°≈,tan53°≈)
19.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
20.(8分)化简(),并说明原代数式的值能否等于-1.
21.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
22.(10分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求点C的坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.
(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.
23.(12分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
24.如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:
根据相反数的定义结合实数的性质进行分析判断即可.
详解:
的相反数是.
故选A.
点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.
2、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
3、A
【解析】
本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
4、B
【解析】
解:sin60°=.故选B.
5、A
【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故选:A.
【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
6、B
【解析】
根据平方差公式计算即可得解.
【详解】
,
故选:B.
【点睛】
本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
7、C
【解析】
【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
【详解】设每个小箱子装洗衣粉x千克,由题意得:
4x+2=36,
解得:x=8.5,
即每个小箱子装洗衣粉8.5千克,
故选C.
【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
8、C
【解析】
试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.
考点:平行线的性质.
9、A
【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
10、C
【解析】
关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),
故选C.
【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.
关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;
关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.
【详解】
∵从中随意摸出两个球的所有可能的结果个数是12,
随意摸出两个球是红球的结果个数是6,
∴从中随意摸出两个球的概率=;
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
12、
【解析】
=.
13、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
14、减小
【解析】
先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可.
【详解】
解:∵反比例函数中,
∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小.
故答案为减小.
【点睛】
考查反比例函数的图象与性质,反比例函数
当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,
当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.
15、1
【解析】
根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
【详解】
解:由题意可得,
a1=52+1=26,
a2=(2+6)2+1=65,
a3=(6+5)2+1=1,
a4=(1+2+2)2+1=26,
…
∴2019÷3=673,
∴a2019= a3=1,
故答案为:1.
【点睛】
本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
16、xy(x﹣1)1
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=xy(x1-1x+1)=xy(x-1)1.
故答案为:xy(x-1)1
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题(共8题,共72分)
17、(1)10%; (2)72; (3)5,见解析; (4)330.
【解析】
解:(1)根据题意得:
D级的学生人数占全班人数的百分比是:
1-20%-46%-24%=10%;
(2)A级所在的扇形的圆心角度数是:20%×360°=72°;
(3)∵A等人数为10人,所占比例为20%,
∴抽查的学生数=10÷20%=50(人),
∴D级的学生人数是50×10%=5(人),
补图如下:
(4)根据题意得:
体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
答:体育测试中A级和B级的学生人数之和是330名.
【点睛】
本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
18、工作人员家到检查站的距离AC的长约为km.
【解析】
分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=,BH=BC•cos∠CBH=.再解Rt△BAH中,求出AH=BH•tan∠ABH=,那么根据AC=CH-AH计算即可.
详解:如图,过点B作BH⊥l交l于点H,
∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,
∴CH=BC•sin∠CBH≈,
BH=BC•cos∠CBH≈.
∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,
∴AH=BH•tan∠ABH≈,
∴AC=CH﹣AH=(km).
答:工作人员家到检查站的距离AC的长约为km.
点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
19、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
试题解析:(1)20÷20%=100,
九年级参赛作文篇数对应的圆心角=360°×=126°;
100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,
其中A代表七年级获奖的特等奖作文.
画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
∴P(七年级特等奖作文被选登在校刊上)= .
考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
20、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
21、(1)落回到圈的概率;(2)可能性不一样.
【解析】
(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
落回到圈的概率;
(2)列表得:
1
2
3
4
5
6
1
2
3
4
5
6
共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
∴,
∵,
可能性不一样
【点睛】
本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)C(﹣3,2);(2)y1=, y2=﹣x+3; (3)3<x<1.
【解析】
分析:
(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;
(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;
(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案.
详解:
(1)作CN⊥x轴于点N,
∴∠CAN=∠CAB=∠AOB=90°,
∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,
∴∠CAN=∠OAB,
∵A(﹣2,0)B(0,1),
∴OB=1,AO=2,
在Rt△CAN和Rt△AOB,
∵ ,
∴Rt△CAN≌Rt△AOB(AAS),
∴AN=BO=1,CN=AO=2,NO=NA+AO=3,
又∵点C在第二象限,
∴C(﹣3,2);
(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),
设这个反比例函数的解析式为:y1=,
又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣1+2c=c,
解得c=1,即反比例函数解析式为y1=,
此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,
∵ ,
∴ ,
∴直线C′B′的解析式为y2=﹣x+3;
(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),
∴若y1<y2时,则3<x<1.
点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.
23、(1)12;(2)点A不与点B重合;(3)
【解析】
(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
(3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
【详解】
解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
∴k=4(1﹣m)=6×(﹣m),
∴解得m=﹣2,
∴k=4×[1﹣(﹣2)]=12;
(2)∵m=﹣2,∴B(4,3),
∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
∴A(b,b2).
若点A与点B重合,则有b=4,且b2=3,显然不成立,
∴点A不与点B重合;
(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
解得,b=,
显然抛物线右半支经过点B;
当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
解得,b=,
这时仍然是抛物线右半支经过点C,
∴b的取值范围为≤b≤.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
24、(1)见解析;(2);(3)当或8时,与相似.
【解析】
(1)想办法证明即可解决问题;
(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
【详解】
(1)证明:四边形ABCD是等腰梯形,
,
,
,
,
,
,
.
(2)解:作于M,于N.则四边形是矩形.
在中,,
,
,
,
,
.
(3)解:,
,
,
相似时,与相似,
,
当时,,此时,
当时,,此时,
综上所述,当PB=5或8时,与△相似.
【点睛】
本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
辽宁省铁岭市达标名校2022年中考试题猜想数学试卷含解析: 这是一份辽宁省铁岭市达标名校2022年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,﹣2×等内容,欢迎下载使用。
江苏铜山县达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份江苏铜山县达标名校2021-2022学年中考试题猜想数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列函数中,二次函数是,剪纸是我国传统的民间艺术等内容,欢迎下载使用。
江苏省无锡新区达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份江苏省无锡新区达标名校2021-2022学年中考试题猜想数学试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中错误的有个,四组数中,已知二次函数y=3,的负倒数是,如果,函数的图像位于等内容,欢迎下载使用。