


辽宁省沈阳市和平区重点名校2021-2022学年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
A. B. C. D.
2.下列方程有实数根的是( )
A. B.
C.x+2x−1=0 D.
3.解分式方程时,去分母后变形为
A. B.
C. D.
4.-5的相反数是( )
A.5 B. C. D.
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )
A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×2
6.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为( )
A.6 B.8 C.10 D.12
7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
A. B. C. D.
8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
9.下列图形中,不是轴对称图形的是( )
A. B. C. D.
10.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4) B.(7,4) C.(6,4) D.(8,3)
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是 _______.
12.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.
13.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .
14.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).
15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
16.反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=____.
17.在函数中,自变量x的取值范围是 .
三、解答题(共7小题,满分69分)
18.(10分)如图,已知,.求证.
19.(5分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).
20.(8分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
21.(10分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
(1)求证:PC是⊙O的切线;
(2)设OP=AC,求∠CPO的正弦值;
(3)设AC=9,AB=15,求d+f的取值范围.
22.(10分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
23.(12分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
24.(14分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
【详解】
解:∵一次函数y=kx+b的图象可知k>1,b<1,
∴-b>1,
∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,
故选:A.
【点睛】
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
2、C
【解析】
分析:根据方程解的定义,一一判断即可解决问题;
详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;
B.∵≥0,∴=﹣1无解,故本选项不符合题意;
C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;
D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.
故选C.
点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3、D
【解析】
试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.
考点:解分式方程的步骤.
4、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
5、B
【解析】
全组有x名同学,则每名同学所赠的标本为:(x-1)件,
那么x名同学共赠:x(x-1)件,
所以,x(x-1)=132,
故选B.
6、B
【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴OA==5,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
7、A
【解析】
根据应用题的题目条件建立方程即可.
【详解】
解:由题可得:
即:
故答案是:A.
【点睛】
本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.
8、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
9、A
【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.
【详解】
根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
故选A.
【点睛】
此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
10、B
【解析】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、60°
【解析】
根据题意可得,根据已知条件计算即可.
【详解】
根据题意可得:
,
故答案为60°
【点睛】
本题主要考查旋转角的有关计算,关键在于识别那个是旋转角.
12、12
【解析】
根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.
【详解】
解:作B′C⊥y轴于点C,如图所示,
∵∠BAB′=90°,∠AOB=90°,AB=AB′,
∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
∴∠ABO=∠BA′C,
∴△ABO≌△BA′C,
∴AO=B′C,
∵点A(0,6),
∴B′C=6,
设点B′的坐标为(6,),
∵点M是线段AB'的中点,点A(0,6),
∴点M的坐标为(3,),
∵反比例函数y=(k≠0)的图象恰好经过点M,
∴=,
解得,k=12,
故答案为:12.
【点睛】
本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
13、2.
【解析】
先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
【详解】
由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
∵线段OA的垂直平分线交OC于点B,∴OB=AB.
则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
∴△ABC周长的值是2.
14、6
【解析】
试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
解:过S作SC⊥AB于C.
∵∠SBC=60°,∠A=30°,
∴∠BSA=∠SBC﹣∠A=30°,
即∠BSA=∠A=30°.
∴SB=AB=1.
Rt△BCS中,BS=1,∠SBC=60°,
∴SC=SB•sin60°=1×=6(海里).
即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
故答案为:6.
15、下降
【解析】
根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.
【详解】
解:∵在中,,
∴抛物线开口向上,
∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,
故答案为下降.
【点睛】
本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.
16、4
【解析】
利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.
【详解】
把点(2,m)代入反比例函数和正比例函数中得,,,则.
【点睛】
本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.
17、。
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须。
三、解答题(共7小题,满分69分)
18、见解析
【解析】
根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.
【详解】
证明:∵∠ABD=∠DCA,∠DBC=∠ACB
∴∠ABD+∠DBC=∠DCA+∠ACB
即∠ABC=∠DCB
在△ABC和△DCB中
∴△ABC≌△DCB(ASA)
∴AB=DC
【点睛】
本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.
19、见解析
【解析】
分别作∠ABC和∠ACB的平分线,它们的交点O满足条件.
【详解】
解:如图,点O为所作.
【点睛】
本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
20、(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立
【解析】
试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;
(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;
(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.
试题解析:解:(1)AF=BE,AF⊥BE.
(2)结论成立.
证明:∵四边形ABCD是正方形,
∴BA="AD" =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,
即∠BAE=∠ADF.
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.
(3)结论都能成立.
考点:正方形,等边三角形,三角形全等
21、(1)详见解析;(2);(3)
【解析】
(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
【详解】
(1)连接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切线,AB是⊙O的直径,
∴∠OBP=90°,
在△POC与△POB中,
,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切线;
(2)过O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD•OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP•OP=OC2
∴,
∴sin∠CPO=;
(3)连接BC,
∵AB是⊙O的直径,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
当CM⊥AB时,
d=AM,f=BM,
∴d+f=AM+BM=1,
当M与B重合时,
d=9,f=0,
∴d+f=9,
∴d+f的取值范围是:9≤d+f≤1.
【点睛】
本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
22、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.
【解析】
(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.
【详解】
(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,
根据题意得:,
解得:x=900,
经检验,x=900是原分式方程的解,
答:二月份每辆车售价是900元;
(2)设每辆山地自行车的进价为y元,
根据题意得:900×(1﹣10%)﹣y=35%y,
解得:y=600,
答:每辆山地自行车的进价是600元.
【点睛】
本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
23、(1)38°;(2)20.4m.
【解析】
(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;
(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.
【详解】
(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.
【点睛】
本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.
24、原式=,当m=l时,原式=
【解析】
先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
解:原式=
∵x2+2x-3=0, ∴x1=-3,x2 =1
∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
∵m+3≠0, ∴.m≠-3, ∴m=1
当m=l时,原式:
“点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
山东省博兴县重点名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份山东省博兴县重点名校2021-2022学年中考试题猜想数学试卷含解析,共19页。试卷主要包含了若正比例函数y=mx,用一根长为a,的相反数是等内容,欢迎下载使用。
2021-2022学年长沙市重点达标名校中考试题猜想数学试卷含解析: 这是一份2021-2022学年长沙市重点达标名校中考试题猜想数学试卷含解析,共18页。试卷主要包含了如图所示,有一条线段是.等内容,欢迎下载使用。
2021-2022学年浙江省杭州北干重点达标名校中考试题猜想数学试卷含解析: 这是一份2021-2022学年浙江省杭州北干重点达标名校中考试题猜想数学试卷含解析,共20页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。