江阴市青阳中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列几何体是棱锥的是( )
A. B. C. D.
2.下列运算正确的是( )
A.x2•x3=x6 B.x2+x2=2x4
C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
3.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是( )
A.0 B.1 C. D.
4.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
5.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是( )
A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)
6.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是( )
A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
7.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
8.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m<﹣1 B.m<1 C.m>﹣1 D.m>1
9.已知方程组,那么x+y的值( )
A.-1 B.1 C.0 D.5
10.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( )
A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
二、填空题(共7小题,每小题3分,满分21分)
11.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.
12.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.
13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.
14.已知(x-ay)(x+ay),那么a=_______
15.已知函数y=-1,给出一下结论:
①y的值随x的增大而减小
②此函数的图形与x轴的交点为(1,0)
③当x>0时,y的值随x的增大而越来越接近-1
④当x≤时,y的取值范围是y≥1
以上结论正确的是_________(填序号)
16.分解因式:3ax2﹣3ay2=_____.
17.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.
三、解答题(共7小题,满分69分)
18.(10分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
19.(5分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为非负整数,且该方程的根都是无理数,求m的值.
20.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
21.(10分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
22.(10分)一道选择题有四个选项.
(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
(2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
23.(12分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
24.(14分)如图,AB是半径为2的⊙O的直径,直线l与AB所在直线垂直,垂足为C,OC=3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点.
(1)当∠A=30°时,MN的长是 ;
(2)求证:MC•CN是定值;
(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;
(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:根据棱锥的概念判断即可.
A是三棱柱,错误;
B是圆柱,错误;
C是圆锥,错误;
D是四棱锥,正确.
故选D.
点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
2、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
3、C
【解析】
试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
解:连接AB,如图所示:
根据题意得:∠ACB=90°,
由勾股定理得:AB==;
故选C.
考点:1.勾股定理;2.展开图折叠成几何体.
4、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
5、A
【解析】
直接利用平移的性质结合轴对称变换得出对应点位置.
【详解】
如图所示:
顶点A2的坐标是(4,-3).
故选A.
【点睛】
此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
6、A
【解析】
试题分析:充分利用图形,直接从图上得出x的取值范围.
由图可知,当y<1时,x<-4,故选C.
考点:本题考查的是一次函数的图象
点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
7、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
8、B
【解析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.
【详解】
∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
∴△=(-2)2-4m=4-4m>0,
解得:m<1.
故选B.
【点睛】
本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.
9、D
【解析】
解:,
①+②得:3(x+y)=15,
则x+y=5,
故选D
10、B
【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1350000000用科学记数法表示为:1350000000=1.35×109,
故选B.
【点睛】
本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.
【详解】
解:∵△EBD由△ABC旋转而成,
∴△ABC≌△EBD,
∴BC=BD,∠EBD=∠ABC=30°,
∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,
∴;
故答案为:1.
【点睛】
此题考查旋转的性质,即图形旋转后与原图形全等.
12、2
【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
则AD∥BE,AD=2BE=,
∴B、E分别是AC、DC的中点.
∴△ADC∽△BEC,
∵BE:AD=1:2,
∴EC:CD=1:2,
∴EC=DE=a,
∴OC=3a,
又∵A(a, ),B(2a, ),
∴S△AOC=AD×CO=×3a× ==1,
解得:k=2.
13、8
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
由俯视图可知:底层最少有5个小立方体,
由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,
∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).
故答案为:8
【点睛】
考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.
14、±4
【解析】
根据平方差公式展开左边即可得出答案.
【详解】
∵(x-ay)(x+ay)=
又(x-ay)(x+ay)
∴
解得:a=±4
故答案为:±4.
【点睛】
本题考查的平方差公式:.
15、②③
【解析】
(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;
(2)由解得:,
∴的图象与x轴的交点为(1,0),故②中结论正确;
(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;
(4)因为在中,当时,,故④中结论错误;
综上所述,正确的结论是②③.
故答案为:②③.
16、3a(x+y)(x-y)
【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).
【点睛】
本题考查提公因式法与公式法的综合运用.
17、m=8或
【解析】
求出抛物线的对称轴分三种情况进行讨论即可.
【详解】
抛物线的对称轴,抛物线开口向下,
当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即 解得符合题意.
当即时,抛物线在-1≤x≤2时,在时取得最大值,即 无解.
当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即 解得符合题意.
综上所述,m的值为8或
故答案为:8或
【点睛】
考查二次函数的图象与性质,注意分类讨论,不要漏解.
三、解答题(共7小题,满分69分)
18、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】
(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
19、(1)m<2;(2)m=1.
【解析】
(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.
【详解】
(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.
∵方程有两个不相等的实数根,
∴△>3.
即﹣8m+2>3.
解得 m<2;
(2)∵m<2,且 m 为非负整数,
∴m=3 或 m=1,
当 m=3 时,原方程为 x2-2x-3=3,
解得 x1=3,x2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x2﹣2=3,
解得 x1=,x2=﹣ ,
综上所述,m=1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.
20、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
21、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
22、(1);(2)
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
【详解】
解:(1)选中的恰好是正确答案A的概率为;
(2)画树状图:
共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
所以选中的恰好是正确答案A,B的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
23、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
【解析】
(1)根据销售额=销售量×销售价单x,列出函数关系式.
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
【详解】
解:(1)由题意得:,
∴w与x的函数关系式为:.
(2),
∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
∵3>28,∴x2=3不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
24、(1);(2)MC•NC=5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.
【解析】
(1)由题意得AO=OB=2、OC=3、AC=5、BC=1,根据MC=ACtan∠A= 、CN=可得答案;
(2)证△ACM∽△NCB得,由此即可求得答案;
(3)设MC=a、NC=b,由(2)知ab=5,由P是圆上异于A、B的动点知a>0,可得b=(a>0),根据反比例函数的性质得a+b不存在最大值,当a=b时,a+b最小,据此求解可得;
(4)设该圆与AC的交点为D,连接DM、DN,证△MDC∽△DNC得,即MC•NC=DC2=5,即DC=,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为.
【详解】
(1)如图所示,根据题意知,AO=OB=2、OC=3,
则AC=OA+OC=5,BC=OC﹣OB=1,
∵AC⊥直线l,
∴∠ACM=∠ACN=90°,
∴MC=ACtan∠A=5×=,
∵∠ABP=∠NBC,
∴∠BNC=∠A=30°,
∴CN=,
则MN=MC+CN=+=,
故答案为:;
(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,
∴△ACM∽△NCB,
∴,
即MC•NC=AC•BC=5×1=5;
(3)设MC=a、NC=b,
由(2)知ab=5,
∵P是圆上异于A、B的动点,
∴a>0,
∴b=(a>0),
根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,
由a=b得a=,解之得a=(负值舍去),此时b=,
此时a+b的最小值为2;
(4)如图,设该圆与AC的交点为D,连接DM、DN,
∵MN为直径,
∴∠MDN=90°,
则∠MDC+∠NDC=90°,
∵∠DCM=∠DCN=90°,
∴∠MDC+∠DMC=90°,
∴∠NDC=∠DMC,
则△MDC∽△DNC,
∴,即MC•NC=DC2,
由(2)知MC•NC=5,
∴DC2=5,
∴DC=,
∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为.
【点睛】
本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.
江苏省无锡市江阴市暨阳中学2021-2022学年中考数学五模试卷含解析: 这是一份江苏省无锡市江阴市暨阳中学2021-2022学年中考数学五模试卷含解析,共23页。
江苏省江阴市青阳片达标名校2021-2022学年中考数学押题试卷含解析: 这是一份江苏省江阴市青阳片达标名校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了下列计算正确的是,2cs 30°的值等于,若 ,则括号内的数是,下列各数中最小的是等内容,欢迎下载使用。
2022届江苏省江阴市青阳初级中学中考五模数学试题含解析: 这是一份2022届江苏省江阴市青阳初级中学中考五模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,正确的是,sin45°的值等于等内容,欢迎下载使用。