年终活动
搜索
    上传资料 赚现金

    2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析

    2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析第1页
    2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析第2页
    2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析

    展开

    这是一份2021-2022学年江苏省江阴市周庄中学中考数学模试卷含解析,共21页。试卷主要包含了方程的解是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )

    A.两车同时到达乙地
    B.轿车在行驶过程中进行了提速
    C.货车出发3小时后,轿车追上货车
    D.两车在前80千米的速度相等
    2.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )

    A.8 B. C. D.
    3.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )

    A.15m B.17m C.18m D.20m
    4.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

    A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
    5.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )

    A.13;13 B.14;10 C.14;13 D.13;14
    6.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是

    A. B. C. D.
    7.关于的方程有实数根,则整数的最大值是( )
    A.6 B.7 C.8 D.9
    8.方程的解是( )
    A. B. C. D.
    9.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
    A. B. C. D.
    10.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
    A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.

    12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.

    13.如果正比例函数的图像经过第一、三象限,那么的取值范围是 __.
    14.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.

    15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
    16.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.
    三、解答题(共8题,共72分)
    17.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
    类别
    频数(人数)
    频率
    小说

    0.5
    戏剧
    4

    散文
    10
    0.25
    其他
    6

    合计

    1
    根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

    18.(8分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.

    (1)求线段 CD 的长;(2)求△ADE 的面积.
    19.(8分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    20.(8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
    (1)求证:△ACE≌△BCD;
    (2)若DE=13,BD=12,求线段AB的长.

    21.(8分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
    ∵ ∴
          
    (思考)在上述问题中,h1,h1与h的数量关系为: .
    (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
    (应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
    22.(10分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)

    23.(12分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.

    24.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
    (1)求购买一个甲种足球、一个乙种足球各需多少元;
    (2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    ①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
    【详解】
    由题意和图可得,
    轿车先到达乙地,故选项A错误,
    轿车在行驶过程中进行了提速,故选项B正确,
    货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
    设货车对应的函数解析式为y=kx,
    5k=300,得k=60,
    即货车对应的函数解析式为y=60x,
    设CD段轿车对应的函数解析式为y=ax+b,
    ,得,
    即CD段轿车对应的函数解析式为y=110x-195,
    令60x=110x-195,得x=3.9,
    即货车出发3.9小时后,轿车追上货车,故选项C错误,
    故选:B.
    【点睛】
    此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式
    2、D
    【解析】
    根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
    【详解】
    ∵正方形ABCD的面积为16,正方形BPQR面积为25,
    ∴正方形ABCD的边长为4,正方形BPQR的边长为5,
    在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
    ∵四边形ABCD是正方形,
    ∴∠A=∠D=∠BRQ=90°,
    ∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
    ∴∠ABR=∠DRS,
    ∵∠A=∠D,
    ∴△ABR∽△DRS,
    ∴,
    ∴,
    ∴DS=,
    ∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
    故选:D.
    【点睛】
    本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
    3、C
    【解析】
    连结OA,如图所示:

    ∵CD⊥AB,
    ∴AD=BD=AB=12m.
    在Rt△OAD中,OA=13,OD=,
    所以CD=OC+OD=13+5=18m.
    故选C.
    4、D
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
    【详解】
    ∵直线EF∥GH,
    ∴∠2=∠ABC+∠1=30°+20°=50°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    5、C
    【解析】
    根据统计图,利用众数与中位数的概念即可得出答案.
    【详解】
    从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11
    所以众数为14;
    将气温按从低到高的顺序排列为:10,11,12,13,14,14,15
    所以中位数为13
    故选:C.
    【点睛】
    本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.
    6、A
    【解析】
    分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
    详解:∵四边形ABCD是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°
    故选A.
    点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    7、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.
    8、D
    【解析】
    按照解分式方程的步骤进行计算,注意结果要检验.
    【详解】
    解:





    经检验x=4是原方程的解
    故选:D
    【点睛】
    本题考查解分式方程,注意结果要检验.
    9、B
    【解析】
    试题分析:根据题意得△=32﹣4m>0,
    解得m<.
    故选B.
    考点:根的判别式.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    10、C
    【解析】
    绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
    【详解】
    n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
    【点睛】
    本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.
    详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,

    则OD=MN,DN=OM,∠AMO=∠BNA=90°,
    ∴∠AOM+∠OAM=90°,
    ∵∠AOB=∠OBA=45°,
    ∴OA=BA,∠OAB=90°,
    ∴∠OAM+∠BAN=90°,
    ∴∠AOM=∠BAN,
    ∴△AOM≌△BAN,
    ∴AM=BN=1,OM=AN=k,
    ∴OD=1+k,BD=OM﹣BN=k﹣1
    ∴B(1+k,k﹣1),
    ∵双曲线y=(x>0)经过点B,
    ∴(1+k)•(k﹣1)=k,
    整理得:k2﹣k﹣1=0,
    解得:k=(负值已舍去),
    故答案为.
    点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.
    【详解】
    请在此输入详解!
    12、AC=BC.
    【解析】
    分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
    详解:添加AC=BC,
    ∵△ABC的两条高AD,BE,
    ∴∠ADC=∠BEC=90°,
    ∴∠DAC+∠C=90°,∠EBC+∠C=90°,
    ∴∠EBC=∠DAC,
    在△ADC和△BEC中

    ∴△ADC≌△BEC(AAS),
    故答案为:AC=BC.
    点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
    注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    13、k>1
    【解析】
    根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.
    【详解】
    因为正比例函数y=(k-1)x的图象经过第一、三象限,
    所以k-1>0,
    解得:k>1,
    故答案为:k>1.
    【点睛】
    此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.
    14、或﹣.
    【解析】
    试题分析:当点F在OB上时,设EF交CD于点P,
    可求点P的坐标为(,1).
    则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
    由题意可得:3+x=2(3﹣x),
    解得:x=.
    由对称性可求当点F在OA上时,x=﹣,
    故满足题意的x的值为或﹣.
    故答案是或﹣.
    【点睛】
    考点:动点问题.
    15、2.40,2.1.
    【解析】
    ∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
    ∴它们的中位数为2.40,众数为2.1.
    故答案为2.40,2.1.
    点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
    16、  
    【解析】
    试题分析:将4400000用科学记数法表示为:4.4×1.
    故答案为4.4×1.
    考点:科学记数法—表示较大的数.

    三、解答题(共8题,共72分)
    17、(1)41(2)15%(3)
    【解析】
    (1)用散文的频数除以其频率即可求得样本总数;
    (2)根据其他类的频数和总人数求得其百分比即可;
    (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
    【详解】
    (1)∵喜欢散文的有11人,频率为1.25,
    ∴m=11÷1.25=41;
    (2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
    故答案为15%;
    (3)画树状图,如图所示:

    所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
    ∴P(丙和乙)==.
    18、(1);(2).
    【解析】
    分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;
    (2)根据三角形的面积公式计算.
    详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.
    ∵,即CD=;
    (2).
    ∵BD=2DE,∴.

    点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    19、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    20、(3)证明见解析; (3)AB=3.
    【解析】
    (3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
    (3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
    【详解】
    证明:(3)如图,

    ∵△ACB与△ECD都是等腰直角三角形,
    ∴AC=BC,CE=CD,
    ∵∠ACB=∠ECD=90°,
    ∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
    ∴∠BCD=∠ACE,在△BCD和△ACE中,
    ∵BC=AC,∠BCD=∠ACE,CD=CE,
    ∴△BCD≌△ACE(SAS);
    (3)由(3)知△BCD≌△ACE,
    则∠DBC=∠EAC,AE=BD=33,
    ∵∠CAD+∠DBC=90°,
    ∴∠EAC+∠CAD=90°,即∠EAD=90°,
    ∵AE=33,ED=33,
    ∴AD==5,
    ∴AB=AD+BD=33+5=3.
    【点睛】
    本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.

    考点:3.全等三角形的判定与性质;3.等腰直角三角形.
    21、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
    【解析】
    思考:根据等腰三角形的性质,把代数式化简可得.
    探究:当点M在BC延长线上时,连接,可得,化简可得.
    应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
    【详解】
    思考



    h1+h1=h.
    探究
    h1-h1=h.
    理由.连接,


    ∴h1-h1=h.
    应用
    在中,令x=0得y=3;
    令y=0得x=-4,则:
    A(-4,0),B(0,3)
    同理求得C(1,0),

    又因为AC=5,
    所以AB=AC,即△ABC为等腰三角形.
    ①当点M在BC边上时,
    由h1+h1=h得:
    1+My=OB,My=3-1=1,
    把它代入y=-3x+3中求得:

    ∴;
    ②当点M在CB延长线上时,
    由h1-h1=h得:
    My-1=OB,My=3+1=4,
    把它代入y=-3x+3中求得:

    ∴,
    综上,所求点M的坐标为或.
    【点睛】
    本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
    22、调整后的滑梯AD比原滑梯AB增加2.5米
    【解析】
    试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
    试题解析: Rt△ABD中,
    ∵AC=3米,
    ∴AD=2AC=6(m)
    ∵在Rt△ABC中,
    ∴AD−AB=6−3.53≈2.5(m).
    ∴调整后的滑梯AD比原滑梯AB增加2.5米.
    23、见解析
    【解析】
    先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
    【详解】

    证明:如图,连接AC.
    ∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
    ∴∠EAC=∠FCA.
    ∵AE=CF,AC=CA, ∴△EAC≌△FCA,
    ∴∠ECA=∠FAC, ∴GA=GC,
    ∴点G在AC的中垂线上,
    ∴点G在BD上.
    【点睛】
    此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
    24、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.

    相关试卷

    江阴市青阳中学2021-2022学年中考数学五模试卷含解析:

    这是一份江阴市青阳中学2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了已知方程组,那么x+y的值等内容,欢迎下载使用。

    江苏省无锡市江阴市暨阳中学2021-2022学年中考数学五模试卷含解析:

    这是一份江苏省无锡市江阴市暨阳中学2021-2022学年中考数学五模试卷含解析,共23页。

    江苏省无锡市江阴市南菁高中学实验校2021-2022学年中考数学五模试卷含解析:

    这是一份江苏省无锡市江阴市南菁高中学实验校2021-2022学年中考数学五模试卷含解析,共26页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map