江苏省仪征市陈集中学2022年中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.一个数和它的倒数相等,则这个数是( )
A.1 B.0 C.±1 D.±1和0
2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )
A.﹣5 B. C. D.7
3.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A. B. C. D.
4.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A.3,-1 B.1,-3 C.-3,1 D.-1,3
5.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x
…
–2
–1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
6.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
A. B. C. D.
7.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )
A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
9.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2 B.3 C.5 D.7
10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是( )
A. B. C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
12.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
13.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)
14.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:
种子数量
100
200
500
1000
2000
A
出芽种子数
96
165
491
984
1965
发芽率
0.96
0.83
0.98
0.98
0.98
B
出芽种子数
96
192
486
977
1946
发芽率
0.96
0.96
0.97
0.98
0.97
下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;
②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;
③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).
15.因式分解:_______________.
16.分解因式:__________.
三、解答题(共8题,共72分)
17.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.
(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;
(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.
18.(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
19.(8分)先化简,再求值:,其中与2,3构成的三边,且为整数.
20.(8分)解分式方程: -1=
21.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:
(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
22.(10分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=和x=﹣时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.
23.(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
24.计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
2、C
【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得
,
解得
所以,一次函数解析式y=x+1,
再将A(3,m)代入,得
m=×3+1=.
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
3、A
【解析】
试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
综上所知这个几何体是圆柱.
故选A.
考点:由三视图判断几何体.
4、A
【解析】
根据题意可得方程组,再解方程组即可.
【详解】
由题意得:,
解得:,
故选A.
5、C
【解析】
当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.
6、B
【解析】
解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:
∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
7、C
【解析】
如图所示,连接CM,
∵M是AB的中点,
∴S△ACM=S△BCM=S△ABC,
开始时,S△MPQ=S△ACM=S△ABC;
由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
结束时,S△MPQ=S△BCM=S△ABC.
△MPQ的面积大小变化情况是:先减小后增大.故选C.
8、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
9、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
10、B
【解析】
首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.
【详解】
AB的中点D的坐标是(4,-2),
∵C(a,-a)在一次函数y=-x上,
∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,
把(4,-2)代入解析式得:4+b=-2,
解得:b=-1,
则函数解析式是y=x-1.
根据题意得:,
解得:,
则交点的坐标是(3,-3).
则这个圆的半径的最小值是:=.
故选:B
【点睛】
本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
【详解】
解:列表如下:
5
6
7
8
9
5
﹣﹣﹣
(6、5)
(7、5)
(8、5)
(9、5)
6
(5、6)
﹣﹣﹣
(7、6)
(8、6)
(9、6)
7
(5、7)
(6、7)
﹣﹣﹣
(8、7)
(9、7)
8
(5、8)
(6、8)
(7、8)
﹣﹣﹣
(9、8)
9
(5、9)
(6、9)
(7、9)
(8、9)
﹣﹣﹣
所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
则P(恰好是两个连续整数)=
故答案为.
【点睛】
此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
12、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
13、4
【解析】
根据圆柱的侧面积公式,计算即可.
【详解】
圆柱的底面半径为r=1,母线长为l=2,
则它的侧面积为S侧=2πrl=2π×1×2=4π.
故答案为:4π.
【点睛】
题考查了圆柱的侧面积公式应用问题,是基础题.
14、②③
【解析】分析:
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
详解:
(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;
(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;
(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.
故答案为:②③.
点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.
15、x3(y+1)(y-1)
【解析】
先提取公因式x3,再利用平方差公式分解可得.
【详解】
解:原式=x3(y2-1)=x3(y+1)(y-1),
故答案为x3(y+1)(y-1).
【点睛】
本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.
16、a(a -4)2
【解析】
首先提取公因式a,进而利用完全平方公式分解因式得出即可.
【详解】
故答案为:
【点睛】
本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
三、解答题(共8题,共72分)
17、 (1) 1<x<3或x<0;(2)证明见解析.
【解析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;
再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H, △AGC∽△BHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.
【详解】
解:(1)将B(3,1)代入,
∴m=3, ,
将B(3,1)代入,
∴,,
∴,
∴不等式的解集为1<x<3或x<0
(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,
则△AGC∽△BHA,
设B(m, )、C(n, ),
∵,
∴,
∴,
∴ ,
∴mn=-9,
联立∴,
∴
∴,
∴为定值.
【点睛】
此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.
18、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
【详解】
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与,交点为,连接
四边形是矩形
(3)如图3,过点做于点
四边形是矩形
,
是等边三角形
,
由(2)知,
在中,
,
【点睛】
此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
19、1
【解析】
试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.
试题解析:原式= ,
∵a与2、3构成△ABC的三边,
∴3−2 又∵a为整数,
∴a=2或3或4,
∵当x=2或3时,原分式无意义,应舍去,
∴当a=4时,原式==1
20、7
【解析】
根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
【详解】
-1=
3-(x-3)=-1
3-x+3=-1
x=7
【点睛】
此题主要考查分式方程的求解,解题的关键是正确去掉分母.
21、(1)30;;(2).
【解析】
试题分析:(1)根据题意列式求值,根据相应数据画图即可;
(2)根据题意列表,然后根据表中数据求出概率即可.
解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
故答案为30,144°;
补全统计图如图所示:
(2)根据题意列表如下:
设竖列为小红抽取的跑道,横排为小花抽取的跑道,
记小红和小花抽在相邻两道这个事件为A,
∴.
考点:列表法与树状图法;扇形统计图;利用频率估计概率.
22、小亮说的对,理由见解析
【解析】
先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.
【详解】
2(x+1)2﹣(4x﹣5)
=2x2+4x+2﹣4x+5,
=2x2+7,
当x=时,原式=+7=7;
当x=﹣时,原式=+7=7.
故小亮说的对.
【点睛】
本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.
23、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
24、1
【解析】
原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.
【详解】
原式=4-1+2-+=1.
【点睛】
此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.
江苏省仪征市新集初级中学2021-2022学年中考猜题数学试卷含解析: 这是一份江苏省仪征市新集初级中学2021-2022学年中考猜题数学试卷含解析,共21页。
江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了二次函数y=ax2+bx+c,下列计算正确的是等内容,欢迎下载使用。
2022年江苏省扬州市仪征市新集初级中学中考联考数学试题含解析: 这是一份2022年江苏省扬州市仪征市新集初级中学中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,若点A,若关于x的一元二次方程等内容,欢迎下载使用。