|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析01
    2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析02
    2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析

    展开
    这是一份2022届江苏省仪征市陈集中学中考数学全真模拟试卷含解析,共25页。试卷主要包含了函数y=自变量x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为(  )
    A.172 B.171 C.170 D.168
    2.下列事件是必然事件的是(  )
    A.任意作一个平行四边形其对角线互相垂直
    B.任意作一个矩形其对角线相等
    C.任意作一个三角形其内角和为
    D.任意作一个菱形其对角线相等且互相垂直平分
    3.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )

    A.1:3 B.1:4 C.1:5 D.1:6
    4.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为(  )

    A. B. C. D.
    5.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是(  )
    A.0 B. C.2+ D.2﹣
    6.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是(  )

    A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)
    7.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是(  )

    A.①②③ B.①②④ C.①③④ D.①②③④
    8.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )

    A.2 B. C. D.
    9.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    10.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )

    A.∠ABD=∠C B.∠ADB=∠ABC C. D.
    11.下列各数中负数是(  )
    A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
    12.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
    A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式:a2-2ab+b2-1=______.
    14.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②;③PD2=PH•CD;④,其中正确的是______(写出所有正确结论的序号).

    15.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.
    16.如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______.

    17.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    18.计算2x3·x2的结果是_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.

    (1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
    (2)知识探究:
    ①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
    ②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
    (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.

    20.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.

    21.(6分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.

    22.(8分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
    例如:求点到直线的距离. 
    解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
    23.(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
    (1)求抛物线的表达式;
    (2)如图,当CP//AO时,求∠PAC的正切值;

    (3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
    24.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
    求证:(1)△ABF≌△DCE;四边形ABCD是矩形.

    25.(10分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).

    26.(12分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
    (1)求AD的长.
    (2)求树长AB.

    27.(12分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    先把所给数据从小到大排列,然后根据中位数的定义求解即可.
    【详解】
    从小到大排列:
    150,164,168,168,,172,176,183,185,
    ∴中位数为:(168+172)÷2=170.
    故选C.
    【点睛】
    本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
    2、B
    【解析】
    必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
    【详解】
    解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
    B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
    C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
    D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
    故选:B.
    【点睛】
    解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
    3、C
    【解析】
    根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
    【详解】
    解:连接CE,∵AE∥BC,E为AD中点,
    ∴ .
    ∴△FEC面积是△AEF面积的2倍.
    设△AEF面积为x,则△AEC面积为3x,
    ∵E为AD中点,
    ∴△DEC面积=△AEC面积=3x.
    ∴四边形FCDE面积为1x,
    所以S△AFE:S四边形FCDE为1:1.

    故选:C.
    【点睛】
    本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
    4、D
    【解析】
    连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.
    故选D.

    点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.
    5、C
    【解析】
    把x的值代入代数式,运用完全平方公式和平方差公式计算即可
    【详解】
    解:当x=2﹣时,
    (7+4)x2+(2+)x+
    =(7+4)(2﹣)2+(2+)(2﹣)+
    =(7+4)(7-4)+1+
    =49-48+1+
    =2+
    故选:C.
    【点睛】
    此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
    6、D
    【解析】
    首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
    【详解】
    解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
    则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
    故选D.
    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
    7、D
    【解析】
    根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
    【详解】
    E点有4中情况,分四种情况讨论如下:
    由AB∥CD,可得∠AOC=∠DCE1=β
    ∵∠AOC=∠BAE1+∠AE1C,
    ∴∠AE1C=β-α
    过点E2作AB的平行线,由AB∥CD,
    可得∠1=∠BAE2=α,∠2=∠DCE2=β
    ∴∠AE2C=α+β
    由AB∥CD,可得∠BOE3=∠DCE3=β
    ∵∠BAE3=∠BOE3+∠AE3C,
    ∴∠AE3C=α-β
    由AB∥CD,可得
    ∠BAE4+∠AE4C+∠DCE4=360°,
    ∴∠AE4C=360°-α-β
    ∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.

    【点睛】
    此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.
    8、C
    【解析】
    解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.

    点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
    9、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.
    10、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.
    11、B
    【解析】
    首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
    【详解】
    A、-(-2)=2,是正数;
    B、-|-2|=-2,是负数;
    C、(-2)2=4,是正数;
    D、-(-2)3=8,是正数.
    故选B.
    【点睛】
    此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
    12、B
    【解析】
    试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
    考点:点的平移.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、 (a-b+1)(a-b-1)
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
    【详解】
    a2-2ab+b2-1,
    =(a-b)2-1,
    =(a-b+1)(a-b-1).
    【点睛】
    本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.
    14、①②③
    【解析】
    依据∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依据△DFP∽△BPH,可得,再根据BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH•CP,再根据CP=CD,即可得出PD2=PH•CD;根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积﹣△BCD的面积,即可得出.
    【详解】
    ∵PC=CD,∠PCD=30°,
    ∴∠PDC=75°,
    ∴∠FDP=15°,
    ∵∠DBA=45°,
    ∴∠PBD=15°,
    ∴∠FDP=∠PBD,
    ∵∠DFP=∠BPC=60°,
    ∴△DFP∽△BPH,故①正确;
    ∵∠DCF=90°﹣60°=30°,
    ∴tan∠DCF=,
    ∵△DFP∽△BPH,
    ∴,
    ∵BP=CP=CD,
    ∴,故②正确;
    ∵PC=DC,∠DCP=30°,
    ∴∠CDP=75°,
    又∵∠DHP=∠DCH+∠CDH=75°,
    ∴∠DHP=∠CDP,而∠DPH=∠CPD,
    ∴△DPH∽△CPD,
    ∴,即PD2=PH•CP,
    又∵CP=CD,
    ∴PD2=PH•CD,故③正确;
    如图,过P作PM⊥CD,PN⊥BC,
    设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,
    ∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
    ∴∠PCD=30°
    ∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,
    ∵S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD
    =×4×2+×2×4﹣×4×4
    =4+4﹣8
    =4﹣4,
    ∴,故④错误,
    故答案为:①②③.

    【点睛】
    本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.
    15、1
    【解析】
    根据弧长公式l=代入求解即可.
    【详解】
    解:∵,
    ∴.
    故答案为1.
    【点睛】
    本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.
    16、﹣1
    【解析】
    先由图形确定:当O、G、D共线时,DG最小;根据正方形的性质证明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的长,从而得DG的最小值.
    【详解】

    在正方形ABCD中,AB=BC,∠ABC=∠BCD,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(SAS),
    ∴∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°
    ∴∠BAE+∠ABF=90°
    ∴∠AGB=90°
    ∴点G在以AB为直径的圆上,
    由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:
    ∵正方形ABCD,BC=2,
    ∴AO=1=OG
    ∴OD=,
    ∴DG=−1,
    故答案为−1.
    【点睛】
    本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.
    17、
    【解析】
    试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.
    18、
    【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
    故答案为:2x5

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
    【解析】
    (1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
    (2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
    (3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
    【详解】
    解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
    ∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
    ∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
    ∴∠BAE=∠CAF,
    在△BAE和△CAF中,
    ,
    ∴△BAE≌△CAF,
    ∴BE=CF,
    ∴EC+CF=EC+BE=BC,
    即EC+CF=BC;
    (2)知识探究:
    ①线段EC,CF与BC的数量关系为:CE+CF=BC.
    理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,
    ∴△CAE′∽△CGE


    同理可得:,

    即;
    ②CE+CF=BC.
    理由如下:
    过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.

    类比(1)可得:E′C+CF′=BC,
    ∵AE′∥EG,∴△CAE′∽△CAE,
    ∴,∴CE=CE′,
    同理可得:CF=CF′,
    ∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
    即CE+CF=BC;
    (3)连接BD与AC交于点H,如图所示:

    在Rt△ABH中,
    ∵AB=8,∠BAC=60°,
    ∴BH=ABsin60°=8×=,
    AH=CH=ABcos60°=8×=4,
    ∴GH===1,
    ∴CG=4-1=3,
    ∴,
    ∴t=(t>2),
    由(2)②得:CE+CF=BC,
    ∴CE=BC -CF=×8-=.
    【点睛】
    本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
    20、一次函数解析式为;反比例函数解析式为;.
    【解析】
    (1)根据A(-1,0)代入y=kx+2,即可得到k的值;
    (2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;
    (3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.
    【详解】
    (1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
    ∴一次函数解析式为y=2x+2;
    把C(1,n)代入y=2x+2得n=4,
    ∴C(1,4),
    把C(1,4)代入y=得m=1×4=4,
    ∴反比例函数解析式为y=;
    (2)∵PD∥y轴,
    而D(a,0),
    ∴P(a,2a+2),Q(a,),
    ∵PQ=2QD,
    ∴2a+2﹣=2×,
    整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
    ∴D(2,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
    21、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    【点睛】
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
    22、(1)点P在直线上,说明见解析;(2).
    【解析】
    解:(1) 求:(1)直线可变为,
    说明点P在直线上;
    (2)在直线上取一点(0,1),直线可变为
    则,
    ∴这两条平行线的距离为.
    23、(1)抛物线的表达式为;(2);(3)P点的坐标是.
    【解析】
    分析:
    (1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
    (2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
    (3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
    详解:
    (1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
    ∴A点坐标是(﹣1,0),点C坐标是(0,1),
    又∵抛物线过A,C两点,

    解得,
    ∴抛物线的表达式为;
    (2)作PH⊥AC于H,
    ∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
    ∴P(-2,1),AC=,
    ∴PC=2,,
    ∴PH=,
    ∵A(﹣1,0),C(0,1),
    ∴∠CAO=15°.
    ∵CP//AO,
    ∴∠ACP=∠CAO=15°,
    ∵PH⊥AC,
    ∴CH=PH=,
    ∴.
    ∴;

    (3)∵,
    ∴抛物线的对称轴为直线,
    ∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
    ∴PQ∥AO,且PQ=AO=1.
    ∵P,Q都在抛物线上,
    ∴P,Q关于直线对称,
    ∴P点的横坐标是﹣3,
    ∵当x=﹣3时,,
    ∴P点的坐标是.

    点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
    【详解】
    请在此输入详解!
    24、(1)见解析;(2)见解析.
    【解析】
    (1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
    (2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
    【详解】
    (1)∵BE=CF,BF=BE+EF,CE=CF+EF,
    ∴BF=CE.
    ∵四边形ABCD是平行四边形,
    ∴AB=DC.
    在△ABF和△DCE中,
    ∵AB=DC,BF=CE,AF=DE,
    ∴△ABF≌△DCE.
    (2)∵△ABF≌△DCE,
    ∴∠B=∠C.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD.
    ∴∠B+∠C=180°.
    ∴∠B=∠C=90°.
    ∴平行四边形ABCD是矩形.
    25、6+
    【解析】
    如下图,过点C作CF⊥AB于点F,设AB长为x,则易得AF=x-4,在Rt△ACF中利用∠的正切函数可由AF把CF表达出来,在Rt△ABE中,利用∠的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.
    【详解】
    解:如图,过点C作CF⊥AB,垂足为F,

    设AB=x,则AF=x-4,
    ∵在Rt△ACF中,tan∠=,
    ∴CF==BD ,
    同理,Rt△ABE中,BE=,
    ∵BD-BE=DE,
    ∴-=3,
    解得x=6+.
    答:树高AB为(6+)米 .
    【点睛】
    作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.
    26、(1);(2).
    【解析】
    试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
    (2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
    试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.

    ∵CH―DH=CD,∴x―x=10,∴x=.
    ∵∠ADH=45°,∴AD=x=.
    (2)如图,过B作BM ⊥AD于M.
    ∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
    设MB=m,∴AB=2m,AM=m,DM=m.
    ∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
    27、 (1)详见解析;(2)4.
    【解析】
    试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
    试题解析:

    (1)连结OD,
    ∵AD平分∠BAC,
    ∴∠DAE=∠DAB,
    ∵OA=OD,
    ∴∠ODA=∠DAO,
    ∴∠ODA=∠DAE,
    ∴OD∥AE,
    ∵DE⊥AC
    ∴OE⊥DE
    ∴DE是⊙O的切线;
    (2)过点O作OF⊥AC于点F,
    ∴AF=CF=3,
    ∴OF=,
    ∵∠OFE=∠DEF=∠ODE=90°,
    ∴四边形OFED是矩形,
    ∴DE=OF=4.
    考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.

    相关试卷

    江苏省仪征市新集初级中学2021-2022学年中考猜题数学试卷含解析: 这是一份江苏省仪征市新集初级中学2021-2022学年中考猜题数学试卷含解析,共21页。

    江苏省仪征市陈集中学2022年中考四模数学试题含解析: 这是一份江苏省仪征市陈集中学2022年中考四模数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,一组数据,已知点A等内容,欢迎下载使用。

    2022年江苏省扬州市仪征市新集初级中学中考联考数学试题含解析: 这是一份2022年江苏省扬州市仪征市新集初级中学中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,若点A,若关于x的一元二次方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map