终身会员
搜索
    上传资料 赚现金
    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安)
    立即下载
    加入资料篮
    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安)01
    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安)02
    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安)

    展开
    这是一份九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安),共30页。

    九年级数学上学期期末复习培优综合练习 -九年级中考真题(四川雅安)
    一.二次根式有意义的条件(共1小题)
    1.(2022•雅安)使有意义的x的取值范围在数轴上表示为(  )
    A. B.
    C. D.
    二.二次根式的加减法(共1小题)
    2.(2022•雅安)下列计算正确的是(  )
    A.32=6 B.(﹣)3=﹣
    C.(﹣2a2)2=2a4 D.+2=3
    三.解一元二次方程-配方法(共1小题)
    3.(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为(  )
    A.﹣3 B.0 C.3 D.9
    四.解一元二次方程-因式分解法(共1小题)
    4.(2021•雅安)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,则该直角三角形的面积是(  )
    A.6 B.12 C.12或 D.6或
    五.换元法解一元二次方程(共1小题)
    5.(2020•雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=   .
    六.根的判别式(共1小题)
    6.(2020•雅安)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是(  )
    A.k B.k且k≠0 C.k且k≠0 D.k
    七.根与系数的关系(共1小题)
    7.(2021•雅安)已知一元二次方程x2+x﹣2021=0的两根分别为m,n,则+的值为    .
    八.二次函数的性质(共1小题)
    8.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为(  )
    A.0 B.2 C.3 D.4
    九.抛物线与x轴的交点(共1小题)
    9.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  )
    ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
    A.②③④ B.①②④ C.①③ D.①②③④
    一十.二次函数的应用(共1小题)
    10.(2021•雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.
    (1)求y与x之间的函数关系式;
    (2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?
    一十一.二次函数综合题(共3小题)
    11.(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).

    (1)求此二次函数的表达式及图象顶点D的坐标;
    (2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;
    (3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
    12.(2021•雅安)已知二次函数y=x2+2bx﹣3b.
    (1)当该二次函数的图象经过点A(1,0)时,求该二次函数的表达式;
    (2)在(1)的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;
    (3)若对满足x≥1的任意实数x,都使得y≥0成立,求实数b的取值范围.

    13.(2020•雅安)已知二次函数y=ax2+2x+c(a≠0)的图象与x轴交于A、B(1,0)两点,与y轴交于点C(0,﹣3),
    (1)求二次函数的表达式及A点坐标;
    (2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;
    (3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N,使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).

    一十二.正方形的性质(共1小题)
    14.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.
    (1)求证:△ABE≌△CDF;
    (2)若AB=3,BE=2,求四边形AECF的面积.

    一十三.圆内接四边形的性质(共3小题)
    15.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为(  )

    A.45° B.60° C.72° D.36°
    16.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为    .

    17.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.
    (1)求证:△ABC是等边三角形;
    (2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.

    一十四.切线的性质(共1小题)
    18.(2020•雅安)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=(  )

    A.62° B.31° C.28° D.56°
    一十五.正多边形和圆(共1小题)
    19.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为(  )

    A.3 B. C. D.3
    一十六.关于x轴、y轴对称的点的坐标(共1小题)
    20.(2021•雅安)在平面直角坐标系中,点A(﹣3,﹣1)关于y轴的对称点的坐标是(  )
    A.(﹣3,1) B.(3,1) C.(3,﹣1) D.(﹣1,﹣3)
    一十七.关于原点对称的点的坐标(共1小题)
    21.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为(  )
    A.﹣4 B.4 C.12 D.﹣12
    一十八.相似三角形的判定与性质(共1小题)
    22.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=(  )

    A. B. C. D.
    一十九.锐角三角函数的定义(共1小题)
    23.(2020•雅安)如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为(  )

    A.8 B.12 C.6 D.12
    二十.概率的意义(共1小题)
    24.(2021•雅安)下列说法正确的是(  )
    A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为
    B.一个抽奖活动的中奖概率为,则抽奖2次就必有1次中奖
    C.统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定
    D.要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式
    二十一.概率公式(共3小题)
    25.(2022•雅安)从﹣1,0,2中任取两个不同的数求和,则和为正的概率为    .
    26.(2020•雅安)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为   .
    27.(2020•雅安)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.
    (1)求被抽查学生人数及成绩在100~110分的学生人数m;
    (2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;
    (3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.

    二十二.列表法与树状图法(共2小题)
    28.(2022•雅安)为了倡导保护资源节约用水,从某小区随机抽取了50户家庭,调查了他们5月的用水量情况,结果如图所示.
    (1)这50户家庭中5月用水量在20~30t的有多少户?
    (2)把图中每组用水量的值用该组的中间值(如0~10的中间值为5)来代替,估计该小区平均每户用水量;
    (3)从该50户用水量在20~40t的家庭中,任抽取2户,用树状图或表格法求至少有1户用水量在30~40t的概率.

    29.(2021•雅安)为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:
    组别
    成绩范围
    频数
    A
    60~70
    2
    B
    70~80
    m
    C
    80~90
    9
    D
    90~100
    n
    (1)分别求m,n的值;
    (2)若把每组中各学生的成绩用这组数据的中间值代替(如60~70的中间值为65)估计全校学生的平均成绩;
    (3)从A组和D组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在D组的概率.


    九年级数学上学期期末复习培优综合练习 -九年级中考真题(四川雅安)
    参考答案与试题解析
    一.二次根式有意义的条件(共1小题)
    1.(2022•雅安)使有意义的x的取值范围在数轴上表示为(  )
    A. B.
    C. D.
    【解答】解:∵有意义,
    ∴x﹣2≥0,
    ∴x≥2,
    故选:B.
    二.二次根式的加减法(共1小题)
    2.(2022•雅安)下列计算正确的是(  )
    A.32=6 B.(﹣)3=﹣
    C.(﹣2a2)2=2a4 D.+2=3
    【解答】解:32=9,故A选项错误;
    (﹣)3=﹣,故B选项错误;
    (﹣2a2)2=4a4,故C选项错误;
    +2=3,故D选项正确.
    故选:D.
    三.解一元二次方程-配方法(共1小题)
    3.(2022•雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为(  )
    A.﹣3 B.0 C.3 D.9
    【解答】解:x2+6x+c=0,
    x2+6x=﹣c,
    x2+6x+9=﹣c+9,
    (x+3)2=﹣c+9.
    ∵(x+3)2=2c,
    ∴2c=﹣c+9,解得c=3,
    故选:C.
    四.解一元二次方程-因式分解法(共1小题)
    4.(2021•雅安)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,则该直角三角形的面积是(  )
    A.6 B.12 C.12或 D.6或
    【解答】解:∵x2﹣7x+12=0,
    ∴x=3或x=4.
    ①当长是4的边是直角边时,该直角三角形的面积是×3×4=6;
    ②当长是4的边是斜边时,第三边是=,该直角三角形的面积是×3×=.
    故选:D.
    五.换元法解一元二次方程(共1小题)
    5.(2020•雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2= 6 .
    【解答】解:设x2+y2=t(t≥0).则
    t2﹣5t﹣6=0,即(t﹣6)(t+1)=0,
    解得,t=6或t=﹣1(不合题意,舍去);
    故x2+y2=6.
    故答案是:6.
    六.根的判别式(共1小题)
    6.(2020•雅安)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是(  )
    A.k B.k且k≠0 C.k且k≠0 D.k
    【解答】解:∵关于x的一元二次方程kx2﹣3x+1=0有两个实数根,
    ∴Δ=(﹣3)2﹣4×k×1≥0且k≠0,
    解得k≤且k≠0,
    故选:C.
    七.根与系数的关系(共1小题)
    7.(2021•雅安)已知一元二次方程x2+x﹣2021=0的两根分别为m,n,则+的值为   .
    【解答】解:∵一元二次方程x2+x﹣2021=0的两根分别为m,n,
    ∴m+n=﹣1,mn=﹣2021,
    ∴+===,
    故答案为:.
    八.二次函数的性质(共1小题)
    8.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为(  )
    A.0 B.2 C.3 D.4
    【解答】解:x+1=﹣x2+2x+3,
    解得x=﹣1或x=2.

    ∴y=,
    把x=2代入y=x+1得y=3,
    ∴函数最大值为y=3.
    故选:C.
    九.抛物线与x轴的交点(共1小题)
    9.(2022•雅安)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为(  )
    ①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.
    A.②③④ B.①②④ C.①③ D.①②③④
    【解答】解:∵y=(x﹣2)2﹣9,
    ∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),
    ∴x=2时,y取最小值﹣9,①正确.
    ∵x>2时,y随x增大而增大,
    ∴y2>y1,②正确.
    将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.
    令(x﹣2)2﹣9=0,
    解得x1=﹣1,x2=5,
    ∴5﹣(﹣1)=6,④正确.
    故选:B.
    一十.二次函数的应用(共1小题)
    10.(2021•雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.
    (1)求y与x之间的函数关系式;
    (2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?
    【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),
    将(12,90),(15,75)代入y=kx+b,
    ,解得:,
    ∴y与x之间的函数关系式为y=﹣5x+150(10≤x≤21,且x为整数).
    (2)依题意得:w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500=﹣5(x﹣20)2+500.
    ∵﹣5<0,
    ∴当x=20时,w取得最大值,最大值为500.
    答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.
    一十一.二次函数综合题(共3小题)
    11.(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).

    (1)求此二次函数的表达式及图象顶点D的坐标;
    (2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;
    (3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
    【解答】解:(1)由题意设二次函数表达式为:y=a(x+1)•(x﹣3),
    ∴a•(﹣3)=﹣3,
    ∴a=1,
    ∴y=(x+1)•(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴D(1,﹣4);
    (2)存在点E,使△ACE是直角三角形,过程如下:
    设点E(1,m),
    ∵A(﹣1,0),C(0,﹣3),
    ∴AC2=10,AE2=4+m2,CE2=1+(m+3)2,
    当∠EAC=90°时,
    AE2+AC2=CE2,
    ∴14+m2=1+(m+3)2,
    ∴m=,
    ∴E1(1,),
    当∠ACE=90°时,
    AC2+CE2=AE2,
    ∴11+(m+3)2=4+m2,
    ∴m=﹣,
    ∴E2(1,﹣),
    当∠AEC=90°时,
    AE2+CE2=AC2,
    ∴5+m2+(m+3)2=10,
    ∴m=﹣1或﹣2,
    ∴E3(1,﹣1),E4(1,﹣2),
    综上所述:点E(1,)或(1,﹣)或(1,﹣1)或(1,﹣2);
    (3)设AD的中点为I,
    ∵A(﹣1,0),D(1,﹣4),
    ∴AD==2,I(0,﹣2),
    ∴PA⊥PD,
    ∴∠ADP=90°,
    ∴点P在以AD的中点I为圆心,为半径的圆上,
    ∵BI==,
    ∴PB最小=﹣.
    12.(2021•雅安)已知二次函数y=x2+2bx﹣3b.
    (1)当该二次函数的图象经过点A(1,0)时,求该二次函数的表达式;
    (2)在(1)的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;
    (3)若对满足x≥1的任意实数x,都使得y≥0成立,求实数b的取值范围.

    【解答】解:(1)把点A(1,0)代入y=x2+2bx﹣3b得:1+2b﹣3b=0,
    解得:b=1,
    ∴二次函数的表达式为:y=x2+2x﹣3.
    (2)如图1,对函数y=x2+2x﹣3,
    当x=0时,y=﹣3,当y=0时,x1=﹣3,x2=1,
    ∴C(0,﹣3),B(﹣3,0),A(1,0),
    ∴AB=4,OB=OC=3,BC=3,
    过点Q作QN⊥AB于点N,
    ∴sin∠NBQ=sin∠OBC,
    ∴,
    设运动时间为t,则:BQ=t,AP=2t,
    ∴BP=4﹣2t,,
    ∴NQ=,
    ∴S△BPQ=,
    ∴当t=1时,△BPQ面积的最大值为.
    (3)①∵二次函数y=x2+2bx﹣3b的图象开口向上,
    ∴当二次函数y=x2+2bx﹣3b的图象与x轴没有交点或只有1个交点时,x≥1总有y≥0成立(如图2);
    此时△≤0,即(2b)2﹣4(﹣3b)≤0,
    解得﹣3≤b≤0;
    ②当二次函数y=x2+2bx﹣3b的图象与x轴有2个交点时,
    Δ=(2b)2﹣4(﹣3b)>0,可得b>0或b<﹣3,
    设此时两交点为(x1,0),(x2,0),则x1+x2=﹣2b,x1•x2=﹣3b,
    要使x≥1的任意实数x,都有y≥0,需x1≤1,x2≤1,即x1﹣1≤0,x2﹣1≤0(如图3),
    ∴(x1﹣1)+(x2﹣1)≤0且(x1﹣1)•(x2﹣1)≥0,
    ∴﹣2b﹣2≤0且﹣3b﹣(﹣2b)+1≥0,
    解得﹣1≤b≤1,
    ∴此时0<b≤1,
    总上所述,对满足x≥1的任意实数x,都使得y≥0成立,则﹣3≤b≤1.


    13.(2020•雅安)已知二次函数y=ax2+2x+c(a≠0)的图象与x轴交于A、B(1,0)两点,与y轴交于点C(0,﹣3),
    (1)求二次函数的表达式及A点坐标;
    (2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;
    (3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N,使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).

    【解答】解:(1)把B(1,0),C(0,﹣3)代入y=ax2+2x+c
    则有,
    解得,
    ∴二次函数的解析式为y=x2+2x﹣3,
    令y=0,得到x2+2x﹣3=0,解得x=﹣3或1,
    ∴A(﹣3,0).

    (2)如图1中连接AD,CD.
    ∵点D到直线AC的距离取得最大,
    ∴此时△DAC的面积最大,
    设直线AC解析式为:y=kx+b,
    ∵A(﹣3,0),C(0,﹣3),
    ∴,
    解得,,
    ∴直线AC的解析式为y=﹣x﹣3,
    过点D作x轴的垂线交AC于点G,设点D的坐标为(x,x2+2x﹣3),
    则G(x,﹣x﹣3),
    ∵点D在第三象限,
    ∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,
    ∴S△ACD=•DG•OA=(﹣x2﹣3x)×3=﹣x2﹣x=﹣(x+)2+,
    ∴当x=﹣时,S最大=,点D(﹣,﹣),
    ∴点D到直线AC的距离取得最大时,D(﹣,﹣).

    (3)存在.如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),

    当OB为对角线时,点N″的横坐标为2,
    x=2时,y=4+4﹣3=5,
    ∴N″(2,5).
    综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).

    一十二.正方形的性质(共1小题)
    14.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.
    (1)求证:△ABE≌△CDF;
    (2)若AB=3,BE=2,求四边形AECF的面积.

    【解答】(1)证明:∵四边形ABCD为正方形,
    ∴CD=AB,∠ABE=∠CDF=45°,
    又∵BE=DF,
    ∴△ABE≌△CDF(SAS).
    (2)解:连接AC,交BD于点O,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,AO=CO,DO=BO,
    又∵DF=BE,
    ∴OE=OF,AO=CO,
    ∴四边形AECF是平行四边形,
    ∵AC⊥EF,
    ∴四边形AECF是菱形,
    ∵AB=3,
    ∴AC=BD=6,
    ∵BE=DF=2,
    ∴四边形AECF的面积=AC•EF=×6×2=6.

    一十三.圆内接四边形的性质(共3小题)
    15.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为(  )

    A.45° B.60° C.72° D.36°
    【解答】解:∵四边形ABCD为⊙O的内接四边形,
    ∴∠BAD+∠BCD=180°,
    由圆周角定理得:∠BOD=2∠BAD,
    ∵四边形OBCD为菱形,
    ∴∠BOD=∠BCD,
    ∴∠BAD+2∠BAD=180°,
    解得:∠BAD=60°,
    故选:B.
    16.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为  144° .

    【解答】解:∵∠DCE=72°,
    ∴∠BCD=180°﹣∠DCE=108°,
    ∵四边形ABCD内接于⊙O,
    ∴∠A=180°﹣∠BCD=72°,
    由圆周角定理,得∠BOD=2∠A=144°,
    故答案为:144°.
    17.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.
    (1)求证:△ABC是等边三角形;
    (2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.

    【解答】(1)证明:∵四边形ABCD内接于圆.
    ∴∠ABC+∠ADC=180°,
    ∵∠ABC=60°,
    ∴∠ADC=120°,
    ∵DB平分∠ADC,
    ∴∠ADB=∠CDB=60°,
    ∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,
    ∴∠ABC=∠BCA=∠BAC,
    ∴△ABC是等边三角形.
    (2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.
    ∴∠AMD=90°,
    ∵∠ADC=120°,
    ∴∠ADM=60°,
    ∴∠DAM=30°,
    ∴DM=AD=1,AM===,
    ∵CD=3,
    ∴CM=CD+DM=1+3=4,
    ∴S△ACD=CD•AM=×=,
    Rt△AMC中,∠AMD=90°,
    ∴AC===,
    ∵△ABC是等边三角形,
    ∴AB=BC=AC=,
    ∴BN=BC=,
    ∴S△ABC=×=,
    ∴四边形ABCD的面积=+=,
    ∵BE∥CD,
    ∴∠E+∠ADC=180°,
    ∵∠ADC=120°,
    ∴∠E=60°,
    ∴∠E=∠BDC,
    ∵四边形ABCD内接于⊙O,
    ∴∠EAB=∠BCD,
    在△EAB和△DCB中,

    ∴△EAB≌△DCB(AAS),
    ∴△BDE的面积=四边形ABCD的面积=.
    方法二
    (2)∵BE∥CD,
    ∴∠EBD=∠BDC,
    ∵∠ADB=∠CDB=60°,
    ∴∠EBD=∠EDB=60°,
    ∴△BDE是等边三角形,
    又∵△ABC为等边三角形,
    ∴∠EBD=∠ABC=60°,
    ∴∠ABE=∠CBD,
    在△ABE和△CBD中,

    ∴△ABE≌△CBD(SAS),
    ∴AE=CD=3,
    ∴DE=AE+AD=5,
    ∴△BDE的面积==

    一十四.切线的性质(共1小题)
    18.(2020•雅安)如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=(  )

    A.62° B.31° C.28° D.56°
    【解答】解:连接OC,如图,
    ∵PC为切线,
    ∴OC⊥PC,
    ∴∠PCO=90°,
    ∴∠POC=90°﹣∠P=90°﹣28°=62°,
    ∵OA=OC,
    ∴∠A=∠OCA,
    而∠POC=∠A+∠OCA,
    ∴∠A=×62°=31°.
    故选:B.

    一十五.正多边形和圆(共1小题)
    19.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为(  )

    A.3 B. C. D.3
    【解答】解:连接OC,OD,
    ∵正六边形ABCDEF是圆的内接多边形,
    ∴∠COD=60°,
    ∵OC=OD,OG⊥CD,
    ∴∠COG=30°,
    ∵⊙O的周长等于6π,
    ∴OC=3,
    ∴OG=3cos30°=,
    故选:C.

    一十六.关于x轴、y轴对称的点的坐标(共1小题)
    20.(2021•雅安)在平面直角坐标系中,点A(﹣3,﹣1)关于y轴的对称点的坐标是(  )
    A.(﹣3,1) B.(3,1) C.(3,﹣1) D.(﹣1,﹣3)
    【解答】解:点A(﹣3,﹣1)关于y轴的对称点A'的坐标是(3,﹣1),
    故选:C.
    一十七.关于原点对称的点的坐标(共1小题)
    21.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为(  )
    A.﹣4 B.4 C.12 D.﹣12
    【解答】解:∵在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则
    ∴得a+2=﹣4,﹣b=﹣2,
    解得a=﹣6,b=2,
    ∴ab=﹣12.
    故选:D.
    一十八.相似三角形的判定与性质(共1小题)
    22.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=(  )

    A. B. C. D.
    【解答】解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴=,
    ∵=,
    ∴=,
    ∴==.
    故选:D.
    一十九.锐角三角函数的定义(共1小题)
    23.(2020•雅安)如图,在Rt△ACB中,∠C=90°,sinB=0.5,若AC=6,则BC的长为(  )

    A.8 B.12 C.6 D.12
    【解答】解:法一、在Rt△ACB中,
    ∵sinB===0.5,
    ∴AB=12.
    ∴BC=

    =6.
    故选:C.
    法二、在Rt△ACB中,
    ∵sinB=0.5,
    ∴∠B=30°.
    ∵tanB===,
    ∴BC=6.
    故选:C.
    二十.概率的意义(共1小题)
    24.(2021•雅安)下列说法正确的是(  )
    A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为
    B.一个抽奖活动的中奖概率为,则抽奖2次就必有1次中奖
    C.统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定
    D.要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式
    【解答】解:A、一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为,故原命题错误,不符合题意;
    B、一个抽奖活动的中奖概率为,则抽奖2次可能有1次中奖,也可能不中奖或全中奖,故原命题错误,不符合题意;
    C、统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩不如乙的数学成绩稳定,故原命题错误,不符合题意;
    D、要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式,正确,符合题意,
    故选:D.
    二十一.概率公式(共3小题)
    25.(2022•雅安)从﹣1,0,2中任取两个不同的数求和,则和为正的概率为   .
    【解答】解:﹣1+0=﹣1,﹣1+2=1,0+2=2,
    由上可得,任取两个不同的数求和一共有3种可能性,其中和为正可能性有2种,
    ∴从﹣1,0,2中任取两个不同的数求和,则和为正的概率为,
    故答案为:.
    26.(2020•雅安)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为  .
    【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,
    ∴使抛物线y=ax2+bx+c的开口向上的概率为,
    故答案为:.
    27.(2020•雅安)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.
    (1)求被抽查学生人数及成绩在100~110分的学生人数m;
    (2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;
    (3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.

    【解答】解:(1)∵成绩在80~90分(含80分,不含90分)的学生有3人,占抽查人数的15%,
    ∴被抽查的学生人数为3÷15%=20(人),
    则成绩在100~110分的学生人数m=20﹣(2+3+7+3)=5;
    (2)这名学生成绩为优秀的概率为=;
    (3)估计本次检测中该校初三年级数学成绩为优秀的人数为300×=120(人).
    二十二.列表法与树状图法(共2小题)
    28.(2022•雅安)为了倡导保护资源节约用水,从某小区随机抽取了50户家庭,调查了他们5月的用水量情况,结果如图所示.
    (1)这50户家庭中5月用水量在20~30t的有多少户?
    (2)把图中每组用水量的值用该组的中间值(如0~10的中间值为5)来代替,估计该小区平均每户用水量;
    (3)从该50户用水量在20~40t的家庭中,任抽取2户,用树状图或表格法求至少有1户用水量在30~40t的概率.

    【解答】解:(1)50﹣20﹣25﹣2=3(户),
    即这50户家庭中5月用水量在20~30t的有3户;
    (2)=12.4(t),
    即估计该小区平均每户用水量约为12.4t;
    (3)由(1)知:用水量在20~30t有3户,
    由条形统计图可知,用水量在30~40t有2户,
    设水量在20~30t的用户用A表示,用水量在30~40t的用户用B表示,
    树状图如下所示,

    由上可得,一共有20种可能性,其中至少有1户用水量在30~40t的有14种可能性,
    ∴至少有1户用水量在30~40t的概率是=.
    29.(2021•雅安)为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:
    组别
    成绩范围
    频数
    A
    60~70
    2
    B
    70~80
    m
    C
    80~90
    9
    D
    90~100
    n
    (1)分别求m,n的值;
    (2)若把每组中各学生的成绩用这组数据的中间值代替(如60~70的中间值为65)估计全校学生的平均成绩;
    (3)从A组和D组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在D组的概率.

    【解答】解:(1)由题意得:n=20×20%=4,
    则m=20﹣2﹣9﹣4=5,
    (2)(65×2+75×5+85×9+95×4)=82.5(分),
    即估计全校学生的平均成绩为82.5分;
    (3)A组有2名学生,D组有4名学生,
    画树状图如图:

    共有30种等可能的结果,抽取的2名学生都在D组的结果有12种,
    ∴抽取的2名学生都在D组的概率为=.

    相关试卷

    九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江): 这是一份九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江),共38页。试卷主要包含了为抛物线上第一象限内的一个动点等内容,欢迎下载使用。

    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳): 这是一份九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳),共46页。试卷主要包含了两点,,顶点D的横坐标为1等内容,欢迎下载使用。

    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川宜宾): 这是一份九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川宜宾),共39页。试卷主要包含了的图象交于点C、D,两点,过点A作AC⊥OP于点C等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map