终身会员
搜索
    上传资料 赚现金

    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州)

    立即下载
    加入资料篮
    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州)第1页
    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州)第2页
    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州)第3页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州)

    展开

    这是一份九年级数学上学期期末复习培优综合练习7+-九年级中考真题(四川达州),共38页。试卷主要包含了,B两点,分别连接OA,OB,,与y轴交于点C等内容,欢迎下载使用。


    九年级数学上学期期末复习培优综合练习7 -九年级中考真题(四川达州)
    一.反比例函数系数k的几何意义(共1小题)
    1.(2020•达州)如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是   .

    二.反比例函数图象上点的坐标特征(共1小题)
    2.(2021•达州)在反比例函数y=(k为常数)的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3),若x1<0<x2<x3,则y1,y2,y3的大小关系为(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y2<y1
    三.反比例函数综合题(共1小题)
    3.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
    (1)求这个反比例函数的表达式;
    (2)求△AOB的面积;
    (3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    四.二次函数的性质(共1小题)
    4.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    五.二次函数图象与系数的关系(共1小题)
    5.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有(  )

    A.1个 B.2个 C.3个 D.4个
    六.二次函数图象上点的坐标特征(共1小题)
    6.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有(  )个.

    A.2 B.3 C.4 D.5
    七.二次函数的应用(共1小题)
    7.(2021•达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.
    (1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
    (2)当降价多少元时,工厂每天的利润最大,最大为多少元?
    (3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
    八.二次函数综合题(共3小题)
    8.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求该二次函数的表达式;
    (2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.

    9.(2021•达州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.
    (1)求抛物线的解析式;
    (2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′+AE′的最小值;
    (3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.

    10.(2020•达州)如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
    (1)求抛物线的解析式;
    (2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.

    九.菱形的性质(共1小题)
    11.(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为    .

    一十.矩形的性质(共1小题)
    12.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是(  )

    A.4 B.3 C.2 D.1
    一十一.切线的性质(共1小题)
    13.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为(  )

    A.π B.π C.π D.π
    一十二.切线的判定与性质(共1小题)
    14.(2021•达州)如图,AB是⊙O的直径,C为⊙O上一点(C不与点A,B重合)连接AC,BC,过点C作CD⊥AB,垂足为点D.将△ACD沿AC翻折,点D落在点E处得△ACE,AE交⊙O于点F.
    (1)求证:CE是⊙O的切线;
    (2)若∠BAC=15°,OA=2,求阴影部分面积.

    一十三.三角形的内切圆与内心(共1小题)
    15.(2020•达州)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=   .
    一十四.扇形面积的计算(共1小题)
    16.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为(  )

    A.2π﹣2 B.2π﹣ C.2π D.π﹣
    一十五.相似三角形的判定与性质(共1小题)
    17.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为(  )

    A.9 B.12 C.15 D.18
    一十六.特殊角的三角函数值(共1小题)
    18.(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.
    一十七.解直角三角形的应用(共1小题)
    19.(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).
    (参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)

    一十八.解直角三角形的应用-仰角俯角问题(共2小题)
    20.(2020•达州)小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为   .(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)

    21.(2021•达州)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC长为48米,在点D处测得桥墩最高点A的仰角为35°,CD平行于水平线BM,CD长为16米,求桥墩AB的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.73)

    一十九.简单组合体的三视图(共1小题)
    22.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是(  )

    A. B. C. D.
    二十.由三视图判断几何体(共1小题)
    23.(2020•达州)图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=(  )

    A.x2+3x+2 B.x2+2x+1 C.x2+4x+3 D.2x2+4x
    二十一.列表法与树状图法(共2小题)
    24.(2021•达州)为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
    (1)这次抽样调查的总人数为    人,扇形统计图中“舞蹈”对应的圆心角度数为    ;
    (2)若该校有1400名学生,估计选择参加书法的有多少人?
    (3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.

    25.(2020•达州)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:
    94 83 90 86 94 88 96 100 89 82
    94 82 84 89 88 93 98 94 93 92
    整理上面的数据,得到频数分布表和扇形统计图:
    等级
    成绩/分
    频数
    A
    95≤x≤100
    a
    B
    90≤x<95
    8
    C
    85≤x<90
    5
    D
    80≤x<85
    4
    根据以上信息,解答下列问题.
    (1)填空:a=   ,b=   ;
    (2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;
    (3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.


    九年级数学上学期期末复习培优综合练习7 -九年级中考真题(四川达州)
    参考答案与试题解析
    一.反比例函数系数k的几何意义(共1小题)
    1.(2020•达州)如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是 9 .

    【解答】解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,
    ∴A(4,3),B(2,6),
    作AD⊥y轴于D,BE⊥y轴于E,
    ∴S△AOD=S△BOE=×12=6,
    ∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,
    ∴S△AOB=(4+2)×(6﹣3)=9,
    故答案为9.

    二.反比例函数图象上点的坐标特征(共1小题)
    2.(2021•达州)在反比例函数y=(k为常数)的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3),若x1<0<x2<x3,则y1,y2,y3的大小关系为(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y2<y1
    【解答】解:∵k2+1>0,
    ∴反比例函数图象在第一、三象限,
    ∵x1<0<x2<x3,
    ∴y1<0,0<y3<y2,
    ∴y1<y3<y2.
    故选:C.
    三.反比例函数综合题(共1小题)
    3.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.
    (1)求这个反比例函数的表达式;
    (2)求△AOB的面积;
    (3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

    【解答】解:(1)∵一次函数y=x+1经过点A(m,2),
    ∴m+1=2,
    ∴m=1,
    ∴A(1,2),
    ∵反比例函数y=经过点(1,2),
    ∴k=2,
    ∴反比例函数的解析式为y=;

    (2)由题意,得,
    解得或,
    ∴B(﹣2,﹣1),
    ∵C(0,1),
    ∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;

    (3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).

    四.二次函数的性质(共1小题)
    4.(2020•达州)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是(  )

    A. B.
    C. D.
    【解答】解:设y=y2﹣y1,
    ∵y1=kx,y2=ax2+bx+c,
    ∴y=ax2+(b﹣k)x+c,
    由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,
    故选项B符合题意,选项A、C、D不符合题意;
    故选:B.
    五.二次函数图象与系数的关系(共1小题)
    5.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(,0);⑤4am2+4bm﹣b≥0.其中正确结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:①∵抛物线的对称轴为直线x=,即对称轴在y轴的右侧,
    ∴ab<0,
    ∵抛物线与y轴交在负半轴上,
    ∴c<0,
    ∴abc>0,
    故①正确;
    ②∵抛物线的对称轴为直线x=,
    ∴﹣=,
    ∴﹣2b=2a,
    ∴a+b=0,
    故②不正确;
    ③∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),
    ∴4a+2b+c=0,
    ∵c<0,
    ∴4a+2b+3c<0,
    故③正确;
    ④由对称得:抛物线与x轴另一交点为(﹣1,0),
    ∵,
    ∴c=﹣2a,
    ∴=﹣1,
    ∴当a≠0,无论b,c取何值,抛物线一定经过(,0),
    故④正确;
    ⑤∵b=﹣a,
    ∴4am2+4bm﹣b=4am2﹣4am+a=a(4m2﹣4m+1)=a(2m﹣1)2,
    ∵a>0,
    ∴a(2m﹣1)2≥0,即4am2+4bm﹣b≥0,
    故⑤正确;
    本题正确的有:①③④⑤,共4个.
    故选:D.
    六.二次函数图象上点的坐标特征(共1小题)
    6.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有(  )个.

    A.2 B.3 C.4 D.5
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∴抛物线与y轴交于点(0,﹣1),
    ∴c=﹣1,
    ∵﹣=1,
    ∴b=﹣2a<0,
    ∴abc>0,故①正确,
    ∵y=ax2﹣2ax﹣1,
    当x=﹣1时,y>0,
    ∴a+2a﹣1>0,
    ∴a>,故②正确,
    当m=1时,m(am+b)=a+b,故③错误,
    ∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,
    ∴y1>y3,
    ∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,
    ∴y3>y2,
    ∴y2<y3<y1,故④错误,
    ∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,
    当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
    当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,
    当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,
    故选:A.

    七.二次函数的应用(共1小题)
    7.(2021•达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.
    (1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
    (2)当降价多少元时,工厂每天的利润最大,最大为多少元?
    (3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
    【解答】解:(1)由题意得:
    W=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,
    x=2时,W=(48﹣30﹣2)(500+50×2)=9600(元),
    答:工厂每天的利润W元与降价x元之间的函数关系为W=﹣50x2+400x+9000,当降价2元时,工厂每天的利润为9600元;
    (2)由(1)得:W=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,
    ∵﹣50<0,
    ∴x=4时,W最大为9800,
    即当降价4元时,工厂每天的利润最大,最大为9800元;
    (3)﹣50x2+400x+9000=9750,
    解得:x1=3,x2=5,
    ∵让利于民,
    ∴x1=3不合题意,舍去,
    ∴定价应为48﹣5=43(元),
    答:定价应为43元.
    八.二次函数综合题(共3小题)
    8.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.
    (1)求该二次函数的表达式;
    (2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.

    【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(3,0),
    ∴,
    解得:
    ∴该二次函数的表达式为y=x2+x+2;
    (2)存在,理由如下:
    如图1,当点P在BC上方时,
    ∵∠PCB=∠ABC,
    ∴CP∥AB,即CP∥x轴,
    ∴点P与点C关于抛物线对称轴对称,
    ∵y=x2+x+2,
    ∴抛物线对称轴为直线x=﹣=1,
    ∵C(0,2),
    ∴P(2,2);
    当点P在BC下方时,设CP交x轴于点D(m,0),
    则OD=m,DB=3﹣m,
    ∵∠PCB=∠ABC,
    ∴CD=BD=3﹣m,
    在Rt△COD中,OC2+OD2=CD2,
    ∴22+m2=(3﹣m)2,
    解得:m=,
    ∴D(,0),
    设直线CD的解析式为y=kx+d,则,
    解得:,
    ∴直线CD的解析式为y=x+2,
    联立,得,
    解得:(舍去),,
    ∴P(,﹣),
    综上所述,点P的坐标为(2,2)或(,﹣);
    (3)由(2)知:抛物线y=x2+x+2的对称轴为直线x=1,
    ∴E(1,0),
    设Q(t,t2+t+2),且﹣1<t<3,
    设直线AQ的解析式为y=ex+f,则,
    解得:,
    ∴直线AQ的解析式为y=(t+2)x﹣t+2,
    当x=1时,y=﹣t+4,
    ∴M(1,﹣t+4),
    同理可得直线BQ的解析式为y=(﹣t﹣)x+2t+2,
    当x=1时,y=t+,
    ∴N(1,t+),
    ∴EM=﹣t+4,EN=t+,
    ∴EM+EN=﹣t+4+t+=,
    故EM+EN的值为定值.

    9.(2021•达州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.
    (1)求抛物线的解析式;
    (2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′+AE′的最小值;
    (3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.

    【解答】解:(1)把C(1,0),B(0,3)代入y=﹣x2+bx+c中,
    得:,
    ∴b=﹣2,c=3,
    ∴y=﹣x2﹣2x+3,
    (2)在OE上取一点D,使得OD=OE,
    连接DE',BD,

    ∵,对称轴x=﹣1,
    ∴E(﹣1,0),OE=1,
    ∴OE'=OE=1,OA=3,
    ∴,
    又∵∠DOE'=∠E'OA,
    △DOE'∽△E'OA,
    ∴,
    ∴,
    当B,E',D三点共线时,BE′+DE′最小为BD,
    BD==,
    ∴的最小值为;
    (3)存在,
    ∵A(﹣3,0),B(0,3),
    设N(n,﹣n2﹣2n+3),
    则AB2=18,AN2=(n2+2n﹣3)2+(n+3)2,BN2=n2+(n2+2n)2,
    ∵以点A,B,M,N为顶点构成的四边形是矩形,
    ∴△ABN是直角三角形,
    若AB是斜边,则AB2=AN2+BN2,
    即18=(n2+2n﹣3)2+(n+3)2+n2+(n2+2n)2,
    解得:n1=,,
    ∴N的横坐标为或,
    若AN是斜边,则AN2=AB2+BN2,
    即(n2+2n﹣3)2+(n+3)2=18+n2+(n2+2n)2,
    解得n=0(与点B重合,舍去)或n=﹣1,
    ∴N的横坐标是﹣1,
    若BN是斜边,则BN2=AB2+AN2,
    即n2+(n2+2n)2=18+(n2+2n﹣3)2+(n+3)2,
    解得n=﹣3(与点A重合,舍去)或n=2,
    ∴N的横坐标为2,
    综上N的横坐标为,,﹣1,2.
    10.(2020•达州)如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
    (1)求抛物线的解析式;
    (2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
    (3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.

    【解答】解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,
    ∴点A(4,0),点B(0,﹣2),
    设抛物线解析式为:y=a(x+1)(x﹣4),
    ∴﹣2=﹣4a,
    ∴a=,
    ∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;
    (2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,

    ∵OP∥AB,
    ∴△ABP和△ABO是等底等高的两个三角形,
    ∴S△PAB=S△ABO,
    ∵OP∥AB,
    ∴直线PO的解析式为y=x,
    联立方程组可得,
    解得:或,
    ∴点P(2+2,1+)或(2﹣2,1﹣);
    当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',连接AP'',BP'',
    ∴AB∥EP''∥OP,OB=BE,
    ∴S△AP''B=S△ABO,
    ∵EP''∥AB,且过点E(0,﹣4),
    ∴直线EP''解析式为y=x﹣4,
    联立方程组可得,
    解得,
    ∴点P''(2,﹣3),
    综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);
    (3)如图2,过点M作MF⊥AC,交AB于F,

    设点M(m,m2﹣m﹣2),则点F(m,m﹣2),
    ∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,
    ∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,
    ∴当m=2时,△MAB的面积有最大值,
    ∴点M(2,﹣3),
    如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,

    ∵∠KOB=30°,KN⊥OK,
    ∴KN=ON,
    ∴MN+ON=MN+KN,
    ∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,
    ∵∠KOB=30°,
    ∴直线OK解析式为y=x,
    当x=2时,点Q(2,2),
    ∴QM=2+3,
    ∵OB∥QM,
    ∴∠PQM=∠PON=30°,
    ∴PM=QM=+,
    ∴MN+ON的最小值为+.
    九.菱形的性质(共1小题)
    11.(2022•达州)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为  52 .

    【解答】解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,
    ∵AC=24,BD=10,
    ∴AO=AC=12,BO=BD=5,
    在Rt△AOB中,
    AB===13,
    ∴菱形的周长=13×4=52.
    故答案为:52.
    一十.矩形的性质(共1小题)
    12.(2020•达州)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是(  )

    A.4 B.3 C.2 D.1
    【解答】解:①∵四边形ABCD是矩形,
    ∴EB=ED,
    ∵BO=DO,
    ∴OE平分∠BOD,
    故①正确;
    ②∵四边形ABCD是矩形,
    ∴∠OAD=∠BAD=90°,
    ∴∠ABD+∠ADB=90°,
    ∵OB=OD,BE=DE,
    ∴OE⊥BD,
    ∴∠BOE+∠OBE=90°,
    ∴∠BOE=∠BDA,
    ∵∠BOD=45°,∠OAD=90°,
    ∴∠ADO=45°,
    ∴AO=AD,
    ∴△AOF≌△ABD(ASA),
    ∴OF=BD,
    故②正确;
    ③∵△AOF≌△ABD,
    ∴AF=AB,
    连接BF,如图1,

    ∴BF=,
    ∵BE=DE,OE⊥BD,
    ∴DF=BF,
    ∴DF=,
    故③正确;
    ④根据题意作出图形,如图2,

    ∵G是OF的中点,∠OAF=90°,
    ∴AG=OG,
    ∴∠AOG=∠OAG,
    ∵∠AOD=45°,OE平分∠AOD,
    ∴∠AOG=∠OAG=22.5°,
    ∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,
    ∵四边形ABCD是矩形,
    ∴EA=ED,
    ∴∠EAD=∠EDA=22.5°,
    ∴∠EAG=90°,
    ∵∠AGE=∠AOG+∠OAG=45°,
    ∴∠AEG=45°,
    ∴AE=AG,
    ∴△AEG为等腰直角三角形,
    故④正确;
    故选:A.
    一十一.切线的性质(共1小题)
    13.(2020•达州)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为(  )

    A.π B.π C.π D.π
    【解答】解:如图,作O点关于AB的对称点O′,连接O′A、O′B,
    ∵OA=OB=O′A=O′B,
    ∴四边形OAO′B为菱形,
    ∵折叠后的与OA、OB相切,
    ∴O′A⊥OA,O′B⊥OB,
    ∴四边形OAO′B为正方形,
    ∴∠AOB=90°,
    ∴劣弧AB的长==π.
    故选:B.

    一十二.切线的判定与性质(共1小题)
    14.(2021•达州)如图,AB是⊙O的直径,C为⊙O上一点(C不与点A,B重合)连接AC,BC,过点C作CD⊥AB,垂足为点D.将△ACD沿AC翻折,点D落在点E处得△ACE,AE交⊙O于点F.
    (1)求证:CE是⊙O的切线;
    (2)若∠BAC=15°,OA=2,求阴影部分面积.

    【解答】(1)证明:连接OC,
    ∵CD⊥AB,
    ∴∠ADC=90°,
    ∵△ACD沿AC翻折得到△ACE,
    ∴∠EAC=∠BAC,∠AEC=∠ADC=90°,
    ∵OA=OC,
    ∴∠ACO=∠BAC,
    ∴∠ACO=∠EAC,
    ∴OC∥AE,
    ∴∠AEC+∠ECO=180°,
    ∴∠ECO=90°,即OC⊥CE,
    ∴CE是⊙O的切线;
    (2)解:连接OF,过点O作OG⊥AE于点G,
    ∵∠BAC=15°,
    ∴∠BAE=2∠BAC=30°,∠COF=2∠EAC=2∠BAC=30°,
    ∵OA=2,
    ∴OG=OA=1,AG=,
    ∵OA=OF,
    ∴AF=2AG=2,
    ∵∠BOC=2∠BAC=30°,CD⊥AB,OC=OA=2,
    ∴CD=OC=1,OD=,
    ∴AE=AD=AO+OD=2+,
    ∴EF=AE﹣AF=2﹣,CE=CD=1,
    ∴S阴影=S梯形OCEF﹣S扇形OCF
    =×(2﹣+2)×1﹣×π×22
    =2﹣﹣π.


    一十三.三角形的内切圆与内心(共1小题)
    15.(2020•达州)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径= 1 .
    【解答】解:∵b+|c﹣3|+a2﹣8a=4﹣19,
    ∴|c﹣3|+(a﹣4)2+()2=0,
    ∴c=3,a=4,b=5,
    ∵32+42=25=52,
    ∴c2+a2=b2,
    ∴△ABC是直角三角形,∠ABC=90°,
    设内切圆的半径为r,
    根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,
    ∴r=1,
    故答案为:1.
    一十四.扇形面积的计算(共1小题)
    16.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作,,,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为(  )

    A.2π﹣2 B.2π﹣ C.2π D.π﹣
    【解答】解:设等边三角形ABC的边长为r,
    ∴=,解得r=2,即正三角形的边长为2,
    ∴这个曲边三角形的面积=2××+(﹣)×3=2π﹣2,
    故选:A.
    一十五.相似三角形的判定与性质(共1小题)
    17.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为(  )

    A.9 B.12 C.15 D.18
    【解答】解:∵四边形ABCD是矩形,
    ∴AD=BC,∠A=∠EBF=∠BCD=90°,
    ∵将矩形ABCD沿直线DE折叠,
    ∴AD=DF=BC,∠A=∠DFE=90°,
    ∴∠BFE+∠DFC=∠BFE+∠BEF=90°,
    ∴∠BEF=∠CFD,
    ∴△BEF∽△CFD,
    ∴,
    ∵CD=3BF,
    ∴CF=3BE=12,
    设BF=x,则CD=3x,DF=BC=x+12,
    ∵∠C=90°,
    ∴Rt△CDF中,CD2+CF2=DF2,
    ∴(3x)2+122=(x+12)2,
    解得x=3(舍去0根),
    ∴AD=DF=3+12=15,
    故选:C.
    一十六.特殊角的三角函数值(共1小题)
    18.(2022•达州)计算:(﹣1)2022+|﹣2|﹣()0﹣2tan45°.
    【解答】解:原式=1+2﹣1﹣2×1
    =1+2﹣1﹣2
    =0.
    一十七.解直角三角形的应用(共1小题)
    19.(2022•达州)某老年活动中心欲在一房前3m高的前墙(AB)上安装一遮阳篷BC,使正午时刻房前能有2m宽的阴影处(AD)以供纳凉.假设此地某日正午时刻太阳光与水平地面的夹角为63.4°,遮阳篷BC与水平面的夹角为10°.如图为侧面示意图,请你求出此遮阳篷BC的长度(结果精确到0.1m).
    (参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18;sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)

    【解答】解:作DF⊥CE交CE于点F,
    ∵EC∥AD,∠CDG=63.4°,
    ∴∠FCD=∠CDG=63.4°,
    ∵tan∠FCD=,tan63.4°≈2.00,
    ∴=2,
    ∴DF=2CF,
    设CF=xm,则DF=2xm,BE=(3﹣2x)m,
    ∵AD=2m,AD=EF,
    ∴EF=2m,
    ∴EC=(2+x)m,
    ∵tan∠BCE=,tan10°≈0.18,
    ∴0.18=,
    解得x≈1.21,
    ∴BE=3﹣2x=0.58(m),
    ∵sin∠BCE=,
    ∴BC==≈3.4(m),
    即此遮阳篷BC的长度约为3.4m.

    一十八.解直角三角形的应用-仰角俯角问题(共2小题)
    20.(2020•达州)小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为 11米 .(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)

    【解答】解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8米,∠ADE=52°,BE=CD=1米,
    在Rt△ADE中,AE=DE•tan∠ADE=8×tan52°≈10.24(米),
    ∴AB=AE+BE=10.24+1≈11(米)
    故答案为:11米.

    21.(2021•达州)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC长为48米,在点D处测得桥墩最高点A的仰角为35°,CD平行于水平线BM,CD长为16米,求桥墩AB的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.73)

    【解答】解:过点C作CE⊥BM于点E,过点D作DF⊥BM于点F,延长DC交AB于点G,

    在Rt△CEB中,∠CBE=30°,BC=48米,
    ∴CE=BC•sin30°=×48=24(米),BE=BC•cos30°=48×≈24×1.73=41.52(米),
    ∴DG=BF=BE+EF=BE+CD=41.52+16≈41.52+27.68=69.2(米),
    在Rt△ADG中,AG=DG•tan∠ADG=69.2×tan35°≈69.2×0.70=48.44(米),
    ∴AB=AG+BG=AG+CE=48.44+24=72.44≈72.4(米),
    答:桥墩AB的高约为72.4米.
    一十九.简单组合体的三视图(共1小题)
    22.(2021•达州)如图,几何体是由圆柱和长方体组成的,它的主视图是(  )

    A. B. C. D.
    【解答】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.
    故选:A.
    二十.由三视图判断几何体(共1小题)
    23.(2020•达州)图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=(  )

    A.x2+3x+2 B.x2+2x+1 C.x2+4x+3 D.2x2+4x
    【解答】解:∵S主=x2+3x=x(x+3),S左=x2+x=x(x+1),
    ∴俯视图的长为x+3,宽为x+1,
    则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,
    故选:C.
    二十一.列表法与树状图法(共2小题)
    24.(2021•达州)为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
    (1)这次抽样调查的总人数为  200 人,扇形统计图中“舞蹈”对应的圆心角度数为  108° ;
    (2)若该校有1400名学生,估计选择参加书法的有多少人?
    (3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.

    【解答】解:(1)这次抽样调查的总人数为:36÷18%=200(人),
    则参加舞蹈”的学生人数为:200﹣36﹣80﹣24=60(人),
    ∴扇形统计图中“舞蹈”对应的圆心角度数为:360°×=108°,
    故答案为:200,108°;
    (2)1400×=560(人),
    即估计选择参加书法有560人;
    (3)画树状图如图:

    共有12种等可能的结果,恰为一男一女的结果有8种,
    ∴恰为一男一女的概率为=.
    25.(2020•达州)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:
    94 83 90 86 94 88 96 100 89 82
    94 82 84 89 88 93 98 94 93 92
    整理上面的数据,得到频数分布表和扇形统计图:
    等级
    成绩/分
    频数
    A
    95≤x≤100
    a
    B
    90≤x<95
    8
    C
    85≤x<90
    5
    D
    80≤x<85
    4
    根据以上信息,解答下列问题.
    (1)填空:a= 3 ,b= 40 ;
    (2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;
    (3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.

    【解答】解:(1)由题意知a=20﹣(8+5+4)=3,b%=×100%=40%,即b=40;
    故答案为:3,40;
    (2)估计该校1200名八年级学生中,达到优秀等级的人数为1200×=660(人);
    (3)列表如下:






    (男,女)
    (男,女)

    (男,女)

    (女,女)

    (男,女)
    (女,女)

    所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,
    ∴恰好抽到一男一女的概率为=.

    相关试卷

    九年级数学上学期期末复习培优综合练习7+-北师大版九年级21-29章【中考真题】(四川成都):

    这是一份九年级数学上学期期末复习培优综合练习7+-北师大版九年级21-29章【中考真题】(四川成都),共39页。试卷主要包含了,点B关于y轴的对称点为B'等内容,欢迎下载使用。

    九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江):

    这是一份九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江),共38页。试卷主要包含了为抛物线上第一象限内的一个动点等内容,欢迎下载使用。

    九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安):

    这是一份九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安),共30页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map