![九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳)01](http://img-preview.51jiaoxi.com/2/3/13542216/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳)02](http://img-preview.51jiaoxi.com/2/3/13542216/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳)03](http://img-preview.51jiaoxi.com/2/3/13542216/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川绵阳)
展开九年级数学上学期期末复习培优综合练习 -九年级中考真题(四川绵阳)
一.二次根式有意义的条件(共1小题)
1.(2020•绵阳)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
二.二次根式的乘除法(共1小题)
2.(2021•绵阳)计算×的结果是( )
A.6 B.6 C.6 D.6
三.根与系数的关系(共1小题)
3.(2021•绵阳)关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,若x2=2x1,则4b﹣9ac的最大值是( )
A.1 B. C. D.2
四.反比例函数图象上点的坐标特征(共1小题)
4.(2021•绵阳)如图,在平面直角坐标系xOy中,直角△ABC的顶点A,B在函数y=(k>0,x>0)图象上,AC∥x轴,线段AB的垂直平分线交CB于点M,交AC的延长线于点E,点A纵坐标为2,点B横坐标为1,CE=1.
(1)求点C和点E的坐标及k的值;
(2)连接BE,求△MBE的面积.
五.反比例函数与一次函数的交点问题(共1小题)
5.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
(1)求反比例函数及一次函数的解析式;
(2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.
六.反比例函数综合题(共1小题)
6.(2020•绵阳)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
七.二次函数图象与系数的关系(共1小题)
7.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
八.二次函数的应用(共1小题)
8.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
九.二次函数综合题(共3小题)
9.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
10.(2021•绵阳)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.
(1)求a的值及t=1秒时点P的坐标;
(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;
(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.
11.(2020•绵阳)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
一十.菱形的性质(共2小题)
12.(2022•绵阳)如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为(2,3),则图象最低点E的坐标为( )
A.(,2) B.(,) C.(,) D.(,2)
13.(2021•绵阳)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB= .
一十一.矩形的性质(共1小题)
14.(2022•绵阳)如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+,则四边形EFGH的周长为( )
A.4(2+) B.4(+1) C.8(+) D.4(++2)
一十二.正方形的性质(共2小题)
15.(2021•绵阳)如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )
A.1 B. C. D.2
16.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
一十三.正多边形和圆(共1小题)
17.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )
A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
一十四.圆柱的计算(共1小题)
18.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )
A.282.6 B.282600000 C.357.96 D.357960000
一十五.旋转的性质(共2小题)
19.(2020•绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=( )
A. B.2 C. D.
20.(2021•绵阳)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.
(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;
(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.
一十六.相似三角形的判定与性质(共1小题)
21.(2021•绵阳)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是( )
A. B. C. D.
一十七.解直角三角形(共1小题)
22.(2021•绵阳)在直角△ABC中,∠C=90°,+=,∠C的角平分线交AB于点D,且CD=2,斜边AB的值是 .
一十八.解直角三角形的应用(共1小题)
23.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= 海里(计算结果不取近似值).
一十九.简单组合体的三视图(共1小题)
24.(2022•绵阳)如图所示几何体是由7个完全相同的正方体组合而成,它的俯视图为( )
A. B.
C. D.
二十.由三视图判断几何体(共1小题)
25.(2021•绵阳)如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是( )
A.2 B.3 C. D.
二十一.列表法与树状图法(共3小题)
26.(2021•绵阳)为庆祝中国共产党建党100周年,某校开展了党史知识竞赛.某年级随机选出一个班的初赛成绩进行统计,得到统计图表,已知在扇形统计图中D段对应扇形圆心角为72°.
分段
成绩范围
频数
频率
A
90~100
a
m
B
80~89
20
b
C
70~79
c
0.3
D
70分以下
10
n
注:90~100表示成绩x满足:90≤x≤100,下同.
(1)在统计表中,a= ,b= ,c= ;
(2)若该年级参加初赛的学生共有2000人,根据以上统计数据估计该年级成绩在90分及以上的学生人数;
(3)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.
27.(2022•绵阳)某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环保小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验.甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( )
A. B. C. D.
28.(2020•绵阳)将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
九年级数学上学期期末复习培优综合练习 -九年级中考真题(四川绵阳)
参考答案与试题解析
一.二次根式有意义的条件(共1小题)
1.(2020•绵阳)若有意义,则a的取值范围是( )
A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1
【解答】解:若有意义,则a﹣1≥0,
解得:a≥1.
故选:A.
二.二次根式的乘除法(共1小题)
2.(2021•绵阳)计算×的结果是( )
A.6 B.6 C.6 D.6
【解答】解:×
=
=
=6,
故选:D.
三.根与系数的关系(共1小题)
3.(2021•绵阳)关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,若x2=2x1,则4b﹣9ac的最大值是( )
A.1 B. C. D.2
【解答】解:∵关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,
∴x1+x2=﹣,x1x2=,
∵x2=2x1,
∴3x1=﹣,即x1=﹣,
∴x2=﹣,
∴=,
∴9ac=2b2,
∴4b﹣9ac=4b﹣9a•=4b﹣2b2=﹣2(b﹣1)2+2,
∵﹣2<0,
∴4b﹣9ac的最大值是2,
故选:D.
四.反比例函数图象上点的坐标特征(共1小题)
4.(2021•绵阳)如图,在平面直角坐标系xOy中,直角△ABC的顶点A,B在函数y=(k>0,x>0)图象上,AC∥x轴,线段AB的垂直平分线交CB于点M,交AC的延长线于点E,点A纵坐标为2,点B横坐标为1,CE=1.
(1)求点C和点E的坐标及k的值;
(2)连接BE,求△MBE的面积.
【解答】解:(1)由题意得点A的坐标为(,2),点B的坐标为(1,k),
又AC∥x轴,且△ACB为直角三角形,
∴点C的坐标为(1,2),
又CE=1,
∴点E的坐标为(2,2),
∵点E在线段AB的垂直平分线上,
∴EA=EB,
在Rt△BCE中,EB2=BC2+CE2,
∴1+(k﹣2)2=,
∴k=2或,
当k=2时,点A,B,C三点重合,不能构成三角形,故舍去,
∴k=,
∴C(1,2),E(2,2),k=;
(2)由(1)可得,AC=,BC=,CE=1,
设AB的中点为D,
AB==,BD==,
∵∠ABC=∠MBD,∠BDM=∠BCA=90°,
∴△BDM∽△BCA,
∴=,
∴BM=×=,
∴S△MBE==×1=.
五.反比例函数与一次函数的交点问题(共1小题)
5.(2022•绵阳)如图,一次函数y=k1x+b与反比例函数y=在第一象限交于M(2,8)、N两点,NA垂直x轴于点A,O为坐标原点,四边形OANM的面积为38.
(1)求反比例函数及一次函数的解析式;
(2)点P是反比例函数第三象限内的图象上一动点,请简要描述使△PMN的面积最小时点P的位置(不需证明),并求出点P的坐标和△PMN面积的最小值.
【解答】解:(1)∵反比例函数y=过点M(2,8),
∴k2=2×8=16,
∴反比例函数的解析式为y=,
设N(m,),
∵M(2,8),
∴S△OMB==8,
∵四边形OANM的面积为38,
∴四边形ABMN的面积为30,
∴(8+)•(m﹣2)=30,
解得m1=8,m2=﹣(舍去),
∴N(8,2),
∵一次函数y=k1x+b的图象经过点M、N,
∴,解得,
∴一次函数的解析式为y=﹣x+10;
(2)与直线MN平行,且在第三象限与反比例函数y=有唯一公共点P时,△PMN的面积最小,
设与直线MN平行的直线的关系式为y=﹣x+n,当与y=在第三象限有唯一公共点时,
有方程﹣x+n=(x<0)唯一解,
即x2﹣nx+16=0有两个相等的实数根,
∴n2﹣4×1×16=0,
解得n=﹣8或x=8(舍去),
∴与直线MN平行的直线的关系式为y=﹣x﹣8,
∴方程﹣x﹣8=的解为x=﹣4,
经检验,x=﹣4是原方程的解,
当x=﹣4时,y==﹣4,
∴点P(﹣4,﹣4),
如图,过点P作AN的垂线,交NA的延长线于点Q,交y轴于点D,延长MB交PQ于点C,由题意得,
PD=4,DQ=8,CD=2,MC=8+4=12,NQ=2+4=6,
∴S△PMN=S△MPC+S梯形MCQN﹣S△PNQ
=×6×12+(12+6)×6﹣×12×6
=36+54﹣36
=54,
答:点P(﹣4,﹣4),△PMN面积的最小值为54.
六.反比例函数综合题(共1小题)
6.(2020•绵阳)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)当m=1时,求一次函数的解析式;
(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
【解答】解:(1)当m=1时,点A(﹣3,1),
∵点A在反比例函数y=的图象上,
∴k=﹣3×1=﹣3,
∴反比例函数的解析式为y=﹣;
∵点B(n,2)在反比例函数y=﹣图象上,
∴2n=﹣3,
∴n=﹣,
设直线AB的解析式为y=ax+b,则,
∴,
∴直线AB的解析式为y=x+3;
(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,
则四边形AMNF是矩形,
∴FN=AM,AF=MN,
∵A(﹣3,m),B(n,2),
∴BF=2﹣m,
∵AE=2﹣m,
∴BF=AE,
在△AEG和△BFG中,,
∴△AEG≌△BFG(AAS),
∴AG=BG,EG=FG,
∴BE=BG+EG=AG+FG=AF,
∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,
∴k=﹣3m=2n,
∴m=﹣n,
∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,
∴BE=AF=n+3,
∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,
∴∠MAE=∠NEB,
∵∠AME=∠ENB=90°,
∴△AME∽△ENB,
∴====,
∴ME=BN=,
在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,
∴m2+()2=(2﹣m)2,
∴m=,
∴k=﹣3m=﹣,
∴反比例函数的解析式为y=﹣.
七.二次函数图象与系数的关系(共1小题)
7.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,
∴3<x2<4,①正确,
∵﹣=1,
∴b=﹣2a,
∴3a+2b=3a﹣4a=﹣a,
∵a>0,
∴3a+2b<0,②错误;
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
由题意可知x=﹣1时,y<0,
∴a﹣b+c<0,
∴a+c<b,
∵a>0,
∴b=﹣2a<0,
∴a+c<0,
∴b2﹣4ac>a+c,
∴b2>a+c+4ac,③正确;
∵抛物线开口向上,与y轴的交点在x轴下方,
∴a>0,c<0,
∴a>c,
∵a﹣b+c<0,b=﹣2a,
∴3a+c<0,
∴c<﹣3a,
∴b=﹣2a,
∴b>c,
所以④错误;
故选:B.
八.二次函数的应用(共1小题)
8.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,
设大孔所在抛物线解析式为y=ax2+,
∵BC=10,
∴点B(﹣5,0),
∴0=a×(﹣5)2+,
∴a=﹣,
∴大孔所在抛物线解析式为y=﹣x2+,
设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,
∵EF=14,
∴点E的横坐标为﹣7,
∴点E坐标为(﹣7,﹣),
∴﹣=m(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴MN=4,
∴|+b﹣(﹣+b)|=4
∴m=﹣,
∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,
∵大孔水面宽度为20米,
∴当x=﹣10时,y=﹣,
∴﹣=﹣(x﹣b)2,
∴x1=+b,x2=﹣+b,
∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),
故选:B.
九.二次函数综合题(共3小题)
9.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
【解答】解:(1)∵顶点D的横坐标为1,
∴抛物线的对称轴为直线x=1,
∵A(﹣1,0),
∴B(3,0),
∴设抛物线的解析式为:y=a(x+1)(x﹣3),
将C(0,3)代入抛物线的解析式,
则﹣3a=3,
解得a=﹣1,
∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.
(2)存在,P(0,﹣1),理由如下:
∵∠APB+∠ACB=180°,
∴∠CAP+∠CBP=180°,
∴点A,C,B,P四点共圆,如图所示,
由(1)知,OB=OC=3,
∴∠OCB=∠OBC=45°,
∴∠APC=∠ABC=45°,
∴△AOP是等腰直角三角形,
∴OP=OA=1,
∴P(0,﹣1).
(3)存在,理由如下:
由(1)知抛物线的解析式为:y=﹣x2+2x+3,
∴D(1,4),
由抛物线的对称性可知,E(2,3),
∵A(﹣1,0),
∴AD=2,DE=,AE=3.
∴AD2=DE2+AE2,
∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.
∵点M在直线l下方的抛物线上,
∴设M(t,﹣t2+2t+3),则t>2或t<0.
∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,
若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,
∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,
解得t=2(舍)或t=3或﹣3或(舍)或﹣,
∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).
综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).
10.(2021•绵阳)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.
(1)求a的值及t=1秒时点P的坐标;
(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;
(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.
【解答】解:(1)由题意知,交点A坐标为(a,﹣2a),代入y=﹣x2﹣2x+4﹣a2,
解得:a=﹣,
抛物线解析式为:y=﹣x2﹣2x+2,
当t=1秒时,OP=,设P的坐标为(x,y),
则,
解得或(舍去),
∴P的坐标为(1,﹣2);
(2)经过t秒后,OP=t,OQ=2t,
由(1)方法知,P的坐标为(t,﹣2t),Q的坐标为(2t,﹣4t),
由矩形PMQN的邻边与坐标轴平行可知,M的坐标为(2t,﹣2t),N的坐标为(t,﹣4t),
矩形PMQN在沿着射线OB移动的过程中,点M与抛物线最先相交,如图1,
然后公共点变为2个,点N与抛物线最后相离,然后渐行渐远,如图2,
将M(2t,﹣2t)代入y=﹣x2﹣2x+2,得2t2+t﹣1=0,
解得:t=,或t=﹣1(舍),
将N(t,﹣4t)代入y=﹣x2﹣2x+2,得(t﹣1)2=3,
解得:t=1+或t=1﹣(舍).
所以,当矩形PMQN与抛物线有公共点时,
时间t的取值范围是:≤t≤1+;
(3)设R(m,n),则R关于原点的对称点为R'(﹣m,﹣n),
当点M恰好在抛物线上时,M坐标为(1,﹣1),
过R'和M作坐标轴平行线相交于点S,如图3,
则R'M==,
又∵n=﹣m2﹣2m+2得(m+1)2=3﹣n,
消去m得:R'M=
=
=
=,
当n=时,R'M长度的最小值为,
此时,n=﹣m2﹣2m+2=,
解得:m=﹣1±,
∴点R的坐标是(﹣1±,).
11.(2020•绵阳)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(0,1),B(,0),
设直线AB的解析式为y=kx+m,
∴,
解得,
∴直线AB的解析式为y=﹣x+1,
∵点F的横坐标为,
∴F点纵坐标为﹣+1=﹣,
∴F点的坐标为(,﹣),
又∵点A在抛物线上,
∴c=1,
对称轴为:x=﹣,
∴b=﹣2a,
∴解析式化为:y=ax2﹣2ax+1,
∵四边形DBFE为平行四边形.
∴BD=EF,
∴﹣3a+1=a﹣8a+1﹣(﹣),
解得a=﹣1,
∴抛物线的解析式为y=﹣x2+2x+1;
(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',
则P'(n,﹣n+1),
∴PP'=﹣n2+n,
S△ABP=OB•PP'=﹣n=﹣+,
∴当n=时,△ABP的面积最大为,此时P(,).
(3)∵,
∴x=0或x=,
∴C(,﹣),
设Q(,m),
①当AQ为对角线时,
∴R(﹣),
∵R在抛物线y=+4上,
∴m+=﹣+4,
解得m=﹣,
∴Q,R;
②当AR为对角线时,
∴R(),
∵R在抛物线y=+4上,
∴m﹣+4,
解得m=﹣10,
∴Q(,﹣10),R().
综上所述,Q,R;或Q(,﹣10),R().
一十.菱形的性质(共2小题)
12.(2022•绵阳)如图1,在菱形ABCD中,∠C=120°,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为(2,3),则图象最低点E的坐标为( )
A.(,2) B.(,) C.(,) D.(,2)
【解答】解:如图,连接AC,NC,
∵四边形ABCD是菱形,∠BCD=120°,
∴AB=BC,AC垂直平分BD,∠ABC=60°,∠ABD=∠DBC=30°,
∴AN=CN,△ABC是等边三角形,
∴AN+MN=CN+MN,
∴当点N在线段CM上时,AN+MN有最小值为CM的长,
∵点F的坐标为(2,3),
∴DB=2,AB+BM=3,
∵点M是AB的中点,
∴AM=BM,CM⊥AB,
∴2BM+BM=3,
∴BM=1,
∵tan∠ABC=tan60°==,
∴CM=,
∵cos∠ABD=cos30°==,
∴BN'=,
∴DN'=,
∴点E的坐标为:(,),
故选:C.
13.(2021•绵阳)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB= 4 .
【解答】解:连接CG,过点C作CM⊥AD,交AD的延长线于M,
∵F、H分别为CE、GE中点,
∴FH是△CEG的中位线,
∴HF=CG,
∵四边形ABCD是菱形,
∴AD∥BC,AB∥CD,
∴∠DGE=∠E,
∵∠EHF=∠DGE,
∴∠E=∠EHF,
∴HF=EF=CF,
∴CG=2HF=2,
∵AB∥CD,
∴∠CDM=∠A=60°,
设DM=x,则CD=2x,CM=,
∵点G为AD的中点,
∴DG=x,
在Rt△CMG中,由勾股定理得:
CG==2,
∴x=2,
∴AB=CD=2x=4.
故答案为:4.
一十一.矩形的性质(共1小题)
14.(2022•绵阳)如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+,则四边形EFGH的周长为( )
A.4(2+) B.4(+1) C.8(+) D.4(++2)
【解答】解:如图1,
Rt△PMN中,∠P=15°,NQ=PQ,∠MQN=30°,
设MN=1,则PQ=NQ=2,MQ=,PN=,
∴cos15°=,tan15°=2﹣,
如图2,
作EK⊥FH于K,作∠AHR=∠BFT=15°,分别交直线AB于R和T,
∵四边形ABCD是矩形,
∴∠A=∠C,
在△AEH与△CGF中,
,
∴△AEH≌△CGF(SAS),
∴EH=GF,
同理证得△EBF≌△GDH,则EF=GH,
∴四边形EFGH是平行四边形,
设HK=a,则EH=2a,EK=,
∴EF=EK=a,
∵∠EAH=∠EBF=90°,
∴∠R=∠T=75°,
∴∠R=∠T=∠HEF=75°,
可得:FT===2,AR=AH•tan15°=4﹣2,△FTE∽△ERH,
∴,
∴,
∴ER=4,
∴AE=ER﹣AR=2,
∴tan∠AEH==,
∴∠AEH=30°,
∴HG=2AH=4,
∵∠BEF=180°﹣∠AEH﹣∠HEF=75°,
∴∠BEF=∠T,
∴EF=FT=2,
∴EH+EF=4+2=2(2+),
∴2(EH+EF)=4(2+),
∴四边形EFGH的周长为:4(2+),
故答案为:A.
一十二.正方形的性质(共2小题)
15.(2021•绵阳)如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )
A.1 B. C. D.2
【解答】解:∵四边形ABCD是正方形,
∴∠FBC=∠DCE=90°,CD=BC=3,
Rt△DCE中,∠CDE=30°,
∴CE=DE,
设CE=x,则DE=2x,
根据勾股定理得:DC2+CE2=DE2,
即32+x2=(2x)2,
解得:x=±(负值舍去),
∴CE=,
∵DE⊥CF,
∴∠DOC=90°,
∴∠DCO=60°,
∴∠BCF=90°﹣60°=30°=∠CDE,
∵∠DCE=∠CBF,CD=BC,
∴△DCE≌△CBF(ASA),
∴BF=CE=.
故选:C.
16.(2020•绵阳)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )
A.2条 B.4条 C.6条 D.8条
【解答】解:如图,
因为以正方形的边长为直径,在正方形内画半圆得到的图形,
所以此图形的对称轴有4条.
故选:B.
一十三.正多边形和圆(共1小题)
17.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )
A.(2﹣2,3) B.(0,1+2) C.(2﹣,3) D.(2﹣2,2+)
【解答】解:如图,连接BD交CF于点M,则点B(2,1),
在Rt△BCM中,BC=4,∠BCM=×120°=60°,
∴CM=BC=2,BM=BC=2,
∴点C的横坐标为﹣(2﹣2)=2﹣2,纵坐标为1+2=3,
∴点C的坐标为(2﹣2,3),
故选:A.
一十四.圆柱的计算(共1小题)
18.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )
A.282.6 B.282600000 C.357.96 D.357960000
【解答】解:由图形可知圆锥的底面圆的半径为0.3m,
圆锥的高为0.4m,
则圆锥的母线长为:=0.5m.
∴圆锥的侧面积S1=π×0.3×0.5=0.15π(m2),
∵圆柱的高为1m.
圆柱的侧面积S2=2π×0.3×1=0.6π(m2),
∴浮筒的表面积=2S1+S2=0.9π(m2),
∵每平方米用锌0.1kg,
∴一个浮筒需用锌:0.9π×0.1kg,
∴1000个这样的锚标浮筒需用锌:1000×0.9π×0.1=90π≈282.6(kg).
故选:A.
一十五.旋转的性质(共2小题)
19.(2020•绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=( )
A. B.2 C. D.
【解答】解:过D作DE⊥BC于E,
则BE=AD=4,DE=7,
设B′C=BC=x,
则DC=x,
∴DC2=DE2+EC2,即2x2=49+(x﹣4)2,
解得:x=5(负值舍去),
∴BC=5,AC=,
在AB上取一点F,使得BF=BC=5,连接DF,
则△DFC∽△CB′B,且相似比为:1,
∴AF=7﹣5=2,
∵AD=4,
∴DF=2,
∴BB′==,
∵将△ABC绕点C顺时针方向旋转后得△A′B′C,
∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,
∴△A′CA∽△B′CB,
∴=,
∴AA′=×=,
故选:A.
20.(2021•绵阳)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.
(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;
(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.
【解答】解:(1)结论:点N在直线AB上,理由如下:
∵∠CMH=∠B,∠CMH+∠C=90°,
∴∠B+∠C=90°,
∴∠BMC=90°,即CM⊥AB,
∴线段CM逆时针旋转90°落在直线BA上,
即点N在直线AB上,
(2)作CD⊥AB于点D,
∵MC=MN,∠CMN=90°,
∴∠MCN=45°,
∵NC∥AB,
∴∠BMC=45°,
∵BC=6,∠B=30°,
∴CD=3,MC=,
∴S=MC2=18,即以MC.MN为邻边的正方形面积为S=18.
一十六.相似三角形的判定与性质(共1小题)
21.(2021•绵阳)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是( )
A. B. C. D.
【解答】解:∵△DAB∽△DCA,
∴=,
∴=,
解得:BD=4(负值舍去),
∵△DAB∽△DCA,
∴,
∴AC=,
∵AC2=AB(AB+BC),
∴(AB)2=AB(AB+BC),
∴AB=4,
∴AB=BD=4,
过B作BH⊥AD于H,
∴AH=AD=3,
∴BH===,
∵AD=3AP,AD=6,
∴AP=2,
当PQ⊥AB时,PQ的值最小,
∵∠AQP=∠AHB=90°,∠PAQ=∠BAH,
∴△APQ∽△ABH,
∴,
∴=,
∴PQ=,
故选:A.
一十七.解直角三角形(共1小题)
22.(2021•绵阳)在直角△ABC中,∠C=90°,+=,∠C的角平分线交AB于点D,且CD=2,斜边AB的值是 3 .
【解答】解:如图,
∵∠C=90°,∠C的角平分线交AB于点D,且CD=2,
∴DE=EC=CF=FD=2,
在Rt△ADE中,AE==,
在Rt△BDF中,BF==,
∴AC•BC=(2+)(2+)
=4(1+++1)
=4(2+)
=18,
AC+BC=(2+)+(2+)
=4+2(+)
=4+5
=9,
∴AB2=AC2+BC2
=(AC+BC)2﹣2AC•BC
=81﹣36
=45,
即AB=3,
故答案为:3.
一十八.解直角三角形的应用(共1小题)
23.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= (5﹣5) 海里(计算结果不取近似值).
【解答】解:如图:过点D作DE⊥AB,垂足为E,
由题意得:
AB=20×=10(海里),∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=90°﹣45°=45°,
∴∠DAC=∠FAC﹣∠FAD=30°,
∠CAB=∠FAB﹣∠FAC=45°,
∴∠ACB=180°﹣∠CAB﹣∠CBA=90°,
在Rt△ACB中,AC=AB•sin45°=10×=5(海里),
设DE=x海里,
在Rt△ADE中,AE===x(海里),
∵DC∥AB,
∴∠DCA=∠CAB=45°,
在Rt△DEC中,CE==x(海里),
DC===x(海里),
∵AE+EC=AC,
∴x+x=5,
∴x=,
∴DC=x=(5﹣5)海里,
故答案为:(5﹣5).
一十九.简单组合体的三视图(共1小题)
24.(2022•绵阳)如图所示几何体是由7个完全相同的正方体组合而成,它的俯视图为( )
A. B.
C. D.
【解答】解:从上向下看,可得如图:
故选:D.
二十.由三视图判断几何体(共1小题)
25.(2021•绵阳)如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是( )
A.2 B.3 C. D.
【解答】解:∵某圆锥的左视图是边长为2的等边三角形,
∴圆锥的底面半径为2÷2=1,母线长为2,
∴此圆锥的高是=.
故选:D.
二十一.列表法与树状图法(共3小题)
26.(2021•绵阳)为庆祝中国共产党建党100周年,某校开展了党史知识竞赛.某年级随机选出一个班的初赛成绩进行统计,得到统计图表,已知在扇形统计图中D段对应扇形圆心角为72°.
分段
成绩范围
频数
频率
A
90~100
a
m
B
80~89
20
b
C
70~79
c
0.3
D
70分以下
10
n
注:90~100表示成绩x满足:90≤x≤100,下同.
(1)在统计表中,a= 5 ,b= 0.4 ,c= 15 ;
(2)若该年级参加初赛的学生共有2000人,根据以上统计数据估计该年级成绩在90分及以上的学生人数;
(3)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.
【解答】解:(1)总人数为:10÷(72÷360)=50(人),
∴b=20÷50=0.4,c=50×0.3=15(人),
∴a=50﹣(20+15+10)=5(人),
故答案为:5,0.4,15;
(2)由题意得:成绩在90~100之间的人数为5,
随机选出的这个班级总人数为50,
设该年级成绩在90~100之间的人数为y,
则,
解得:y=200,
(3)由(1)(2)可知:A段有男生2人,女生3人,
记2名男生分别为男1,男2;记3名女生分别为女1,女2,女3,
选出2名学生的结果有:
男1男2,男1女1,男1女2,男1女3,男2女1,
男2女2,男2女3,女1女2,女1女3,女2女3,
共10种结果,并且它们出现的可能性相等,
其中包含1名男生1名女生的结果有6种,
∴P==,即选到1名男生和1名女生的概率为.
27.(2022•绵阳)某校开展岗位体验劳动教育活动,设置了“安全小卫士”“环保小卫士”“图书管理小卫士”“宿舍管理小卫士”共四个岗位,每个岗位体验人数不限且每位同学只能从中随机选择一个岗位进行体验.甲、乙两名同学都参加了此项活动,则这两名同学恰好在同一岗位体验的概率为( )
A. B. C. D.
【解答】解:根据题意画树状图如图所示,
由树状图可知,共有16种等可能的情况,其中甲乙两名同学恰好在同一岗位体验的情况共有4种,
∴这两名同学恰好在同一岗位体验的概率为=.
故选:A.
28.(2020•绵阳)将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为( )
A. B. C. D.
【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:
共有9种等可能的情况数,其中恰有一个篮子为空的有6种,
则恰有一个篮子为空的概率为=.
故选:A.
九年级数学上学期期末复习培优综合练习7+-北师大版九年级21-29章【中考真题】(四川成都): 这是一份九年级数学上学期期末复习培优综合练习7+-北师大版九年级21-29章【中考真题】(四川成都),共39页。试卷主要包含了,点B关于y轴的对称点为B'等内容,欢迎下载使用。
九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江): 这是一份九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江),共38页。试卷主要包含了为抛物线上第一象限内的一个动点等内容,欢迎下载使用。
九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安): 这是一份九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安),共30页。