![九年级数学上学期期末复习培优综合练习5+-华东师大版九年级21-29章【中考真题】(四川资阳)第1页](http://img-preview.51jiaoxi.com/2/3/13522583/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九年级数学上学期期末复习培优综合练习5+-华东师大版九年级21-29章【中考真题】(四川资阳)第2页](http://img-preview.51jiaoxi.com/2/3/13522583/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九年级数学上学期期末复习培优综合练习5+-华东师大版九年级21-29章【中考真题】(四川资阳)第3页](http://img-preview.51jiaoxi.com/2/3/13522583/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
九年级数学上学期期末复习培优综合练习5+-华东师大版九年级21-29章【中考真题】(四川资阳)
展开这是一份九年级数学上学期期末复习培优综合练习5+-华东师大版九年级21-29章【中考真题】(四川资阳),共35页。试卷主要包含了,其对称轴与x轴交于点D等内容,欢迎下载使用。
九年级数学上学期期末复习培优综合练习5 -华东师大版九年级21-29章【中考真题】(四川资阳)
一.一元二次方程的解(共1小题)
1.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是 .
二.根的判别式(共1小题)
2.(2020•资阳)关于x的一元二次方程(a+1)x2+bx+1=0有两个相等的实数根,则代数式8a﹣2b2+6的值是 .
三.二次函数图象与系数的关系(共3小题)
3.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
4.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为( )
A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
5.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是( )
A.①② B.①②③ C.①③④ D.①②③④
四.二次函数综合题(共3小题)
6.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(﹣1,0).
(1)求二次函数的表达式;
(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.
①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
7.(2021•资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;
(3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.
8.(2020•资阳)如图,抛物线y=ax2+bx+c的顶点C的坐标是(6,﹣4),它的图象经过点A(4,0),其对称轴与x轴交于点D.
(1)求该抛物线的解析式;
(2)若点E是抛物线对称轴上一动点,点F是y轴上一动点,且点E、F在运动过程中始终保持DF⊥OE,垂足为点N,连接CN,当CN最短时,求点N的坐标;
(3)连接AC(若点P是x轴下方抛物线上一动点(点P与顶点C不重合),过点P作PM⊥AC于点M,是否存在点P,使PM、CM的长度是2倍关系.若存在,求出此时点P的坐标;若不存在,说明理由.
五.直角三角形斜边上的中线(共1小题)
9.(2020•资阳)如图,在Rt△ABC中,∠ACB=90°,AC=2,点D是AB的中点,连接CD,将△BCD沿射线CA方向平移,在此过程中,△BCD的边CD与Rt△ABC的边AB、AC分别交于点E、F,当△AEF的面积是Rt△ABC面积的时,则△BCD平移的距离是 .
六.切线的性质(共1小题)
10.(2022•资阳)如图,△ABC内接于⊙O,AB是直径,过点A作⊙O的切线AD.若∠B=35°,则∠DAC的度数是 度.
七.切线的判定与性质(共1小题)
11.(2021•资阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC交BA的延长线于点E,交AC于点F.
(1)求证:DE是⊙O的切线;
(2)若AC=6,tanE=,求AF的长.
八.扇形面积的计算(共2小题)
12.(2020•资阳)如图,△ABC中,∠C=90o,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为( )
A. B.π C. D.2π
13.(2021•资阳)如图,在矩形ABCD中,AB=2cm,AD=cm以点B为圆心,AB长为半径画弧,交CD于点E,则图中阴影部分的面积为 cm2.
九.解直角三角形的应用-仰角俯角问题(共2小题)
14.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,基站塔与水平地面垂直,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)
(1)求D处的竖直高度;
(2)求基站塔AB的高.
15.(2020•资阳)”毗河引水工程”能解决我市大部分地区严重缺水的问题.如图中,BC是该工程修建的一条引水渡槽,为测量它的长度,某人将无人机放飞到点A处测得渡槽端点B的俯角是60°后,再沿俯角30°的方向飞行400米到达点D处,此时测得渡槽端点B和端点C的俯角分别为14°和45°(点A、B、C、D在同一平面内).(参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)
(1)求无人机从点A处飞到点D处下降的垂直高度和水平距离(结果保留根号);
(2)求渡槽BC的长度(计算结果精确到0.1米).
一十.解直角三角形的应用-方向角问题(共1小题)
16.(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)
(1)求点D与点A的距离;
(2)求隧道AB的长度.(结果保留根号)
一十一.概率公式(共3小题)
17.(2022•资阳)投掷一枚六个面分别标有1、2、3、4、5、6的质地均匀的正方体骰子,则偶数朝上的概率是 .
18.(2021•资阳)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为 .
19.(2020•资阳)在一个不透明的口袋里装有除颜色不同外,其余都相同的4个红球和若干个绿球,袋中的球已被搅匀,若从中任意取出一个小球为绿球的概率是,则口袋里绿球个数是 个.
一十二.列表法与树状图法(共3小题)
20.(2022•资阳)某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)若全校共有学生3600人,求愿意参加劳动类社团的学生人数;
(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.
21.(2021•资阳)目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B(关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.
请根据图中信息,解答下列问题:
(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;
(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.
22.(2020•资阳)某市为了解垃圾分类投放工作的落实情况,在全市范围内对部分社区进行抽查,抽查结果分为:A(优秀)、B(良好)、C(一般)、D(较差)四个等级,现将抽查结果绘制成如图所示的统计图.(注:该市将垃圾分为干垃圾、湿垃圾、可回收垃圾、有害垃圾共四类)
(1)本次共抽查了 个社区,C(一般)所在扇形的圆心角的度数是 度,并补全直方图;
(2)若全市共有120个社区,请估计达到良好及以上的社区有多少个?
(3)小明和他的妈妈将分好类的四种垃圾每人各提两袋去分类投放,请用树状图或列表法求小明恰好提到干垃圾和湿垃圾的概率是多少?
九年级数学上学期期末复习培优综合练习5 -华东师大版九年级21-29章【中考真题】(四川资阳)
参考答案与试题解析
一.一元二次方程的解(共1小题)
1.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是 6 .
【解答】解:∵a是一元二次方程x2+2x﹣3=0的一个根,
∴a2+2a﹣3=0,
∴a2+2a=3,
∴2a2+4a=2(a2+2a)=2×3=6,
故答案为:6.
二.根的判别式(共1小题)
2.(2020•资阳)关于x的一元二次方程(a+1)x2+bx+1=0有两个相等的实数根,则代数式8a﹣2b2+6的值是 ﹣2 .
【解答】解:根据题意得a+1≠0且Δ=b2﹣4×(a+1)=0,即b2﹣4a﹣4=0,
∴b2﹣4a=4,
所以原式=﹣2(b2﹣4a)+6=﹣2×4+6=﹣2,
故答案为﹣2.
三.二次函数图象与系数的关系(共3小题)
3.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【解答】解:∵二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1),
∴,c=1,
∴ab>0,
∴abc>0,故①正确;
从图中可以看出,当x=﹣1时,函数值大于1,
因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,
即a﹣b+c>1,故②正确;
∵,
∴b=2a,
从图中可以看出,当x=1时,函数值小于0,
∴a+b+c<0,
∴3a+c<0,故③正确;
∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),
∴设二次函数的解析式为y=a(x+1)2+2,
将(0,1)代入得,1=a+2,
解得a=﹣1,
∴二次函数的解析式为y=﹣(x+1)2+2,
∴当x=1时,y=﹣2;
∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
4.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为( )
A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0
【解答】解:由题意,抛物线的顶点(1,2),
又∵线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.
∴开口向下,
∴a<0,
当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,
∴a=﹣,
观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,
∴﹣≤a<0.
故选:C.
5.(2020•资阳)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,且与x轴、y轴分别交于A、B两点,其中点A在点(3,0)的右侧,直线y=﹣x+c经过A、B两点.给出以下四个结论:①b>0;②c>;③3a+2b+c>0;④<a<0,其中正确的结论是( )
A.①② B.①②③ C.①③④ D.①②③④
【解答】解:∵抛物线开口向下,
∴a<0,
∵﹣=1,
∴b=﹣2a>0,故①正确;
∵直线y=﹣x+c经过点A,点A在点(3,0)的右侧,
∴﹣+c>0,
∴c>,故②正确;
∵a<0,c>0,b=﹣2a,
∴3a+2b+c=3a﹣4a+c=﹣a+c>0,故③正确;
由图象可知,当x=3时,9a+3b+c>﹣+c,
∴9a+3b>﹣,
∴3a>﹣,
∴a>﹣,
∴<a<0,故④正确;
故选:D.
四.二次函数综合题(共3小题)
6.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(﹣1,0).
(1)求二次函数的表达式;
(2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.
①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
【解答】解:(1)∵二次函数的图象的顶点坐标为A(1,4),
∴设二次函数的表达式为y=a(x﹣1)2+4,
又∵B(﹣1,0),
∴0=a(﹣1﹣1)2+4,
解得:a=﹣1,
∴y=﹣(x﹣1)2+4(或y=﹣x2+2x+3);
(2)①∵点P在x轴正半轴上,
∴m>0,
∴BP=m+1,
由旋转可得:BD=2BP,
∴BD=2(m+1),
过点A(1,4)作AE⊥x轴于点E,
∴BE=2,AE=4,
在Rt△ABE中,AB2=BE2+AE2=22+42=20,
当四边形ABCD为矩形时,AD⊥AB,
∴∠BAD=∠BEA=90°,
又∠ABE=∠DBA,
∴△BAE∽△BDA,
∴AB2=BE⋅BD,
∴4(m+1)=20,
解得m=4;
②由题可得点A(1,4)与点C关于点P(4,0)成中心对称,
∴C(7,﹣4),
∵点M在直线x=4上,
∴点M的横坐标为4,
存在以点B、C、M、Q为顶点的平行四边形,
1)当以BC为边时,平行四边形为BCMQ,点C向左平移8个单位,与点B的横坐标相同,
∴将点M向左平移8个单位后,与点Q的横坐标相同,
∴Q(﹣4,y1)代入y=﹣x2+2x+3,
解得:y1=﹣21,
∴Q(﹣4,﹣21),
2)当以BC为边时,平行四边形为BCQM,点B向右平移8个单位,与点C的横坐标相同,
∴将M向右平移8个单位后,与点Q的横坐标相同,
∴Q(12,y2)代入y=﹣x2+2x+3,
解得:y2=﹣117,
∴Q(12,﹣117),
3)当以BC为对角线时,点M向左平移5个单位,与点B的横坐标相同,
∴点C向左平移5个单位后,与点Q的横坐标相同,
∴Q(2,y3)代入y=﹣x2+2x+3,
得:y3=3,
∴Q(2,3),
综上所述,存在符合条件的点Q,其坐标为(﹣4,﹣21)或(2,3)或(12,﹣117).
7.(2021•资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;
(3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.
【解答】解:(1)∵y=﹣x2+bx+c经过B(﹣1,0),C(0,3),
∴,
解得,
∴抛物线的解析式为y=﹣x2+2x+3.
(2)如图1中,过点B作BT∥y轴交AC于T,过点P作PQ∥OC交AC于Q.
设P(m,﹣m2+2m+3),
对于抛物线y=﹣x2+2x+3,令y=0,可得x=3或﹣1,
∴A(3,0),
∵C(0,3),
∴直线AC的解析式为y=﹣x+3,
∵B(﹣1,0),
∴T(﹣1,4),
∴BT=4,
∵PQ∥OC,
∴Q(m,﹣m+3),
∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,
∵PQ∥BT,
∴==,
∴﹣m2+3m=2,
解得m=1或2,
∴P(1,4)或(2,3).
(3)如图2中,连接AD′,过点N作NJ⊥AD′于J,过点C作CT⊥AD′于T.
∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D(1,4),
∵C(0,3),
∴直线CD的解析式为y=x+3,CD=,
∵DD′=2CD,
∵DD′=2,CD′=3,
∴D′(3,6),
∵A(3,0),
∴AD′⊥x轴,
∴OD′===3,
∴sin∠OD′A==,
∵CT⊥AD′,
∴CT=3,
∵NJ⊥AD′,
∴NJ=ND′•sin∠OD′A=D′N,
∴D'N+CN=CN+NJ,
∵CN+NJ≥CT,
∴D'N+CN≥3,
∴D'N+CN的最小值为3,
此时N为OD'与CT的交点,
∴N(1.5,3),
∵平移后抛物线的解析式为y=﹣(x﹣3)2+6,MN平行y轴,将x=1.5代入抛物线解析式,
∴M(1.5,3.75),
∴MN=0.75
8.(2020•资阳)如图,抛物线y=ax2+bx+c的顶点C的坐标是(6,﹣4),它的图象经过点A(4,0),其对称轴与x轴交于点D.
(1)求该抛物线的解析式;
(2)若点E是抛物线对称轴上一动点,点F是y轴上一动点,且点E、F在运动过程中始终保持DF⊥OE,垂足为点N,连接CN,当CN最短时,求点N的坐标;
(3)连接AC(若点P是x轴下方抛物线上一动点(点P与顶点C不重合),过点P作PM⊥AC于点M,是否存在点P,使PM、CM的长度是2倍关系.若存在,求出此时点P的坐标;若不存在,说明理由.
【解答】解:(1)由题意可设抛物线的解析式为y=a(x﹣6)2﹣4,
∵图象经过点A(4,0),
∴a(4﹣6)2﹣4=0,
∴a=1,
∴y=(x﹣6)2﹣4=x2﹣12x+32,
∴该抛物线的解析式为y=x2﹣12x+32;
(2)如图1,
∵点E、F在运动过程中始终保持DF⊥OE,
∴点N是以OD为直径的圆上的一动点,
设以OD为直径的圆的圆心为点G,连接CG,交⊙G于点N',此时CN'即为最短的CN,过点N'作N'B⊥x轴于点B,
由已知得OD=6,CD=4,
∴GD=3,CG=5,
∵N'B⊥x轴,CD⊥x轴,
∴N'B∥CD,
∴△GBN'∽△GDC,
∴,
∴N'B=,GB=,
∴OB=OG+GB
=3+
=,
∴点N的坐标为(,﹣);
(3)存在点P,使PM、CM的长度是2倍关系.
∵A(4,0),D(6,0),
∴AD=2,
∵,∠ADC=90°,
∴当PM、CM的长度是2倍关系时,△PCM与△ACD相似.
①当点P在抛物线的对称轴的右侧时,PM=2CM,△PCM∽△CAD,
如图2,延长CP交x轴于点Q,此时∠QCA=∠QAC,
∴QA=QC,
∴QA2=QC2,
设Q(m,0),则(m﹣4)2=(m﹣6)2+42,
解得m=9,
∴Q(9,0),
设直线CQ的解析式为y=kx+b(k≠0),将C(6,﹣4),Q(9,0)代入,得:
,
解得,
∴y=x﹣12,
联立,
解得(舍去),,
∴点P(,﹣);
②当点P在抛物线对称轴的左侧时,CM=2PM,△PCM∽△ACD,
如图3,过点A作AH⊥AC,交CP的延长线于点H,过点H作HK⊥x轴,交x轴于点K,
由勾股定理得AC==2,
∵AH⊥AC,PM⊥AC,
∴AH∥PM,
∴△PCM∽△HCA,
∵△PCM∽△ACD,
∴△HCA∽△ACD,
∴=,
∴,
∴AH=,
∵HK⊥x轴,AH⊥AC,
∴∠HKA=∠ADC=∠HAC=90°,
∴∠KAH+∠AHK=90°,∠CAD+∠KAH=90°,
∴∠AHK=∠CAD,
∴△AHK∽△CAD,
∴,
∴,
∴AK=2,KH=1,
∴H(2,﹣1),
设直线CH的解析式为y=mx+n(m≠0),将C(6,﹣4),H(2,﹣1)代入,得:
,
解得,
∴直线CH的解析式为y=﹣x+,
联立,
解得(舍去),,
∴点P(,﹣);
综上所述,满足条件的点P的坐标为(,﹣)或(,﹣).
五.直角三角形斜边上的中线(共1小题)
9.(2020•资阳)如图,在Rt△ABC中,∠ACB=90°,AC=2,点D是AB的中点,连接CD,将△BCD沿射线CA方向平移,在此过程中,△BCD的边CD与Rt△ABC的边AB、AC分别交于点E、F,当△AEF的面积是Rt△ABC面积的时,则△BCD平移的距离是 2﹣ .
【解答】解:∵D是AB的中点,
∴S△ACD=S△ABC,
∵△AEF的面积是Rt△ABC面积的,
∴△AEF的面积是△ADC面积的,
∵EF∥CD,
∴△AEF∽△ADC,
∴=()2=,即=,
∴AF=,
∴CF=2﹣,
∴△BCD平移的距离是2﹣,
故答案为2﹣.
六.切线的性质(共1小题)
10.(2022•资阳)如图,△ABC内接于⊙O,AB是直径,过点A作⊙O的切线AD.若∠B=35°,则∠DAC的度数是 35 度.
【解答】解:∵AB为直径,
∴∠C=90°,
∵∠B=35°,
∴∠BAC=55°,
∵AD与⊙O相切,
∴AB⊥AD,即∠BAD=90°,
∴∠CAD=90°﹣∠BAC=35°.
故答案为:35.
七.切线的判定与性质(共1小题)
11.(2021•资阳)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC交BA的延长线于点E,交AC于点F.
(1)求证:DE是⊙O的切线;
(2)若AC=6,tanE=,求AF的长.
【解答】证明:(1)如图,连接OD,
∵AB=AC,
∴∠ABC=∠ACB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODB=∠ACB,
∴AC∥OD,
∴∠DFC=∠ODF,
∵DE⊥AC,
∴∠DFC=∠ODF=90°,
∴OD⊥DE,
∴DE是⊙O的切线;
(2)∵AC=6=AB,
∴AO=OB=3=OD,
∵OD⊥DE,tanE=,
∴=,
∴DE=4,
∴OE===5,
∴AE=OE﹣OA=2,
∵AC∥OD,
∴△AEF∽△OED,
∴,
∴,
∴AF=.
八.扇形面积的计算(共2小题)
12.(2020•资阳)如图,△ABC中,∠C=90o,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为( )
A. B.π C. D.2π
【解答】解:在Rt△ACB中,∠C=90o,AC=BC=2,由勾股定理得:AB==2,
∵将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,
∴∠CAC1=90°,
∴阴影部分的面积S=S+S﹣S△ACB﹣S
=+2×2﹣2×2﹣
=π,
故选:B.
13.(2021•资阳)如图,在矩形ABCD中,AB=2cm,AD=cm以点B为圆心,AB长为半径画弧,交CD于点E,则图中阴影部分的面积为 (﹣π) cm2.
【解答】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AD=BC=cm,∠C=∠ABC=90°,CD∥AB,
在Rt△BCE中,
∵AB=BE=2cm,BC=cm,
∴EC==1cm,
∴∠EBC=30°,
∴∠ABE=∠BEC=60°,
∴S阴=S矩形ABCD﹣S△BEC﹣S扇形AEB,
=2﹣×1×﹣•π•22,
=(﹣π)cm2.
故答案为:(﹣π).
九.解直角三角形的应用-仰角俯角问题(共2小题)
14.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,基站塔与水平地面垂直,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)
(1)求D处的竖直高度;
(2)求基站塔AB的高.
【解答】解:(1)如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,
∵斜坡CB的坡度为i=1:2.4,
∴=,
即=,
设DM=5k米,则CM=12k米,
在Rt△CDM中,CD=13米,由勾股定理得,
CM2+DM2=CD2,
即(5k)2+(12k)2=132,
解得k=1,
∴DM=5(米),CM=12(米),
答:D处的竖直高度为5米;
(2)斜坡CB的坡度为i=1:2.4,
设DE=12a米,则BE=5a米,
又∵∠ACF=45°,
∴AF=CF=(12+12a)米,
∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,
在Rt△ADE中,DE=12a米,AE=(7+12a)米,
∵tan∠ADE=tan53°≈,
∴≈,
解得a=,
∴DE=12a=21(米),AE=7+12a=28(米),
BE=5a=(米),
∴AB=AE﹣BE=28﹣=(米),
答:基站塔AB的高为米.
15.(2020•资阳)”毗河引水工程”能解决我市大部分地区严重缺水的问题.如图中,BC是该工程修建的一条引水渡槽,为测量它的长度,某人将无人机放飞到点A处测得渡槽端点B的俯角是60°后,再沿俯角30°的方向飞行400米到达点D处,此时测得渡槽端点B和端点C的俯角分别为14°和45°(点A、B、C、D在同一平面内).(参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)
(1)求无人机从点A处飞到点D处下降的垂直高度和水平距离(结果保留根号);
(2)求渡槽BC的长度(计算结果精确到0.1米).
【解答】解:(1)过点A作AF⊥CB,交CB的延长线于点F,过点D作DE⊥AF于点E,
在Rt△AED中,∠ADE=30°,AD=400米,
∴AE=AD•sin30°=200米,
DE=AD•cos30°=200米.
答:无人机从点A处飞到点D处下降的垂直高度为200米,水平距离为200米;
(2)过点D作DG⊥BC于点G,设DG=x,
∴CG=DG=x,
在Rt△DBG中,∠DBG=14°,
∴BG==≈=4x,
∵四边形EFGD是矩形,
∴EF=DG=x,FG=DE=200,
∴BF=200﹣4x,
AF=AE+EF=200+x,
在Rt△AFB中,∠ABF=60°,
∴tan∠ABF==,
∴x=50.38,
∴BC=5x≈251.9(米).
答:渡槽BC的长度为251.9米.
一十.解直角三角形的应用-方向角问题(共1小题)
16.(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)
(1)求点D与点A的距离;
(2)求隧道AB的长度.(结果保留根号)
【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,
在Rt△ADC中,
∴(米),
答:点D与点A的距离为300米.
(2)过点D作DE⊥AB于点E,
∵AB是东西走向,
∴∠ADE=45°,∠BDE=60°,
在Rt△ADE中,
∴,
在Rt△BDE中,
∴,
∴(米),
答:隧道AB的长为米.
一十一.概率公式(共3小题)
17.(2022•资阳)投掷一枚六个面分别标有1、2、3、4、5、6的质地均匀的正方体骰子,则偶数朝上的概率是 .
【解答】解:在正方体骰子中,朝上的数字为偶数的情况有3种,分别是:2,4,6,骰子共有6面,
∴朝上的数字为偶数的概率为:.
故答案为:.
18.(2021•资阳)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为 .
【解答】解:∵一共有2+4+6=12本书籍,其中文学类有4本,
∴小陈从中随机抽取一本,抽中文学类的概率为=,
故答案为:.
19.(2020•资阳)在一个不透明的口袋里装有除颜色不同外,其余都相同的4个红球和若干个绿球,袋中的球已被搅匀,若从中任意取出一个小球为绿球的概率是,则口袋里绿球个数是 2 个.
【解答】解:设袋中的绿球个数为x个,
∴=,
解得:x=2,
经检验,x=2是原方程的解,
∴袋中绿球的个数2个;
故答案为:2.
一十二.列表法与树状图法(共3小题)
20.(2022•资阳)某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)若全校共有学生3600人,求愿意参加劳动类社团的学生人数;
(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.
【解答】解:(1)本次调查的学生人数为:80÷40%=200(人),
则科普类的学生人数为:200﹣40﹣50﹣80=30(人),
补全条形统计图如下:
(2)愿意参加劳动社团的学生人数为:(人);
(3)把阅读、美术、劳动社团分别记为A、B、C,
画出树状图如下:
共有9种等可能的结果,其中甲、乙两名同学选中同一社团的结果有3种,
∴甲、乙两名同学恰好选中同一社团的概率为.
21.(2021•资阳)目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B(关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.
请根据图中信息,解答下列问题:
(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;
(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.
【解答】解:(1)调查的职工人数为:150÷75%=200(人),
∴C类职工所对应扇形的圆心角度数为:360°×=27°,
A类的人数为200﹣150﹣15﹣5=30(人),
补全条形统计图如下:
(2)画树状图如图:
共有20种等可能的结果,恰好抽到一名女士和一名男士的结果有12种,
∴恰好抽到一名女士和一名男士的概率为=.
22.(2020•资阳)某市为了解垃圾分类投放工作的落实情况,在全市范围内对部分社区进行抽查,抽查结果分为:A(优秀)、B(良好)、C(一般)、D(较差)四个等级,现将抽查结果绘制成如图所示的统计图.(注:该市将垃圾分为干垃圾、湿垃圾、可回收垃圾、有害垃圾共四类)
(1)本次共抽查了 20 个社区,C(一般)所在扇形的圆心角的度数是 36 度,并补全直方图;
(2)若全市共有120个社区,请估计达到良好及以上的社区有多少个?
(3)小明和他的妈妈将分好类的四种垃圾每人各提两袋去分类投放,请用树状图或列表法求小明恰好提到干垃圾和湿垃圾的概率是多少?
【解答】解:(1)本次共抽查的社区有:10÷50%=20(个),
C(一般)的社区有:20﹣10﹣6﹣2=2(个),
C(一般)所在扇形的圆心角的度数是:360°×=36°,
补全统计图如下:
故答案为:20,36;
(2)120×=96(个),
答:达到良好及以上的社区有96个.
(3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用A、B、C、D表示,根据题意画图如下:
共有12种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有2种,
则小明恰好提到干垃圾和湿垃圾的概率是=.
相关试卷
这是一份九年级数学上学期期末复习培优综合练习7+-北师大版九年级21-29章【中考真题】(四川成都),共39页。试卷主要包含了,点B关于y轴的对称点为B'等内容,欢迎下载使用。
这是一份九年级数学上学期期末复习培优综合练习4+-华东师大版九年级21-29章【中考真题】(四川内江),共38页。试卷主要包含了为抛物线上第一象限内的一个动点等内容,欢迎下载使用。
这是一份九年级数学上学期期末复习培优综合练习+-九年级中考真题(四川雅安),共30页。