|试卷下载
终身会员
搜索
    上传资料 赚现金
    徽省临泉2022年中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    徽省临泉2022年中考数学对点突破模拟试卷含解析01
    徽省临泉2022年中考数学对点突破模拟试卷含解析02
    徽省临泉2022年中考数学对点突破模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    徽省临泉2022年中考数学对点突破模拟试卷含解析

    展开
    这是一份徽省临泉2022年中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列计算,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
    A. B. C. D.
    2.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为(  )
    A.8.1×106 B.8.1×105 C.81×105 D.81×104
    3.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是(  )

    A.2 B. C. D.
    4.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
    A.4 B.﹣4 C.2 D.±2
    5.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0; 当时,;,其中错误的结论有  
    A.②③ B.②④ C.①③ D.①④
    6.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为(  )cm.
    A. B. C. D.
    7.下列计算,正确的是(  )
    A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
    8.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    9.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    10.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.

    12.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
    13.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为    . 

    14.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.

    15.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算△ABC的周长等于_____.
    (2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
    ___________________________.

    16.在函数y=的表达式中,自变量x的取值范围是 .
    三、解答题(共8题,共72分)
    17.(8分)如图,BD是矩形ABCD的一条对角线.
    (1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
    (2)求证:DE=BF.

    18.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.

    (1)求点B距水平面AE的高度BH;
    (2)求广告牌CD的高度.
    19.(8分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.
    (1)请根据以上信息求出二次函数表达式;
    (1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.

    20.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)

    21.(8分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
    这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
    22.(10分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.75

    23.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.

    (1)填空:∠AHC   ∠ACG;(填“>”或“<”或“=”)
    (2)线段AC,AG,AH什么关系?请说明理由;
    (3)设AE=m,
    ①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
    ②请直接写出使△CGH是等腰三角形的m值.
    24.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。

    (1)当t=时,求DP的长
    (2)在点P运动过程中,依照条件所形成的△OPD面积为S
    ①当t>0时,求S与t之间的函数关系式
    ②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
    【详解】
    列表如下:








    绿

    绿



    ﹣﹣﹣

    (红,红)

    (红,红)

    (绿,红)

    (绿,绿)



    (红,红)

    ﹣﹣﹣

    (红,红)

    (绿,红)

    (绿,红)



    (红,红)

    (红,红)

    ﹣﹣﹣

    (绿,红)

    (绿,红)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    ﹣﹣﹣

    (绿,绿)

    绿

    (红,绿)

    (红,绿)

    (红,绿)

    (绿,绿)

    ﹣﹣﹣

    ∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,
    ∴,
    故选A.
    2、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    810 000=8.1×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    当⊙C与AD相切时,△ABE面积最大,
    连接CD,
    则∠CDA=90°,
    ∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
    ∴CD=1,AC=2+1=3,
    ∴AD==2,
    ∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
    ∴△AOE∽△ADC,

    即,∴OE=,
    ∴BE=OB+OE=2+
    ∴S△ABE=
    BE?OA=×(2+)×2=2+
    故答案为C.
    4、D
    【解析】
    根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
    【详解】
    因为点M(a,2a)在反比例函数y=的图象上,可得:
    ,
    ,
    解得:,
    故选D.
    【点睛】
    本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.
    5、C
    【解析】
    ①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;
    ②根据自变量为-1时函数值,可得答案;
    ③根据观察函数图象的纵坐标,可得答案;
    ④根据对称轴,整理可得答案.
    【详解】
    图象开口向下,得a<0,
    图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;
    ②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;
    ③由图象,得
    图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;
    ④由对称轴,得x=-=1,解得b=-2a,
    2a+b=0
    故④正确;
    故选D.
    【点睛】
    考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    6、B
    【解析】
    分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
    详解:由题意可得圆锥的母线长为:24cm,
    设圆锥底面圆的半径为:r,则2πr=,
    解得:r=10,
    故这个圆锥的高为:(cm).
    故选B.
    点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
    7、C
    【解析】
    解:A.故错误;
    B. 故错误;
    C.正确;
    D.
    故选C.
    【点睛】
    本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
    8、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    9、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    10、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
    【详解】
    连接BE,

    设⊙O半径为r,则OA=OD=r,OC=r-2,
    ∵OD⊥AB,
    ∴∠ACO=90°,
    AC=BC=AB=4,
    在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
    r=5,
    ∴AE=2r=10,
    ∵AE为⊙O的直径,
    ∴∠ABE=90°,
    由勾股定理得:BE=6,
    在Rt△ECB中,EC=.
    故答案是:.
    【点睛】
    考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
    12、36
    【解析】
    10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
    所以:m+n=10+i+j
    当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
    m+n=10+2=12
    也就是:当m+n=12时,m·n最大是多少?这就容易了:
    m·n<=36
    所以m·n的最大值就是36
    13、65°
    【解析】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.
    【详解】
    根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,
    ∴∠CAD=25°;
    在△ADC中,∠C=90°,∠CAD=25°,
    ∴∠ADC=65°(直角三角形中的两个锐角互余);
    故答案是:65°.
    14、1.
    【解析】
    ∵∠AOB=∠COD,
    ∴S阴影=S△AOB.
    ∵四边形ABCD是平行四边形,
    ∴OA=AC=×1=2.
    ∵AB⊥AC,
    ∴S阴影=S△AOB=OA•AB=×2×1=1.
    【点睛】
    本题考查了扇形面积的计算.
    15、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【解析】
    (1)利用勾股定理求出AB,从而得到△ABC的周长;
    (2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
    【详解】
    解:(1)∵AC=3,BC=4,∠C=90º,
    ∴根据勾股定理得AB=5,
    ∴△ABC的周长=5+4+3=12.
    (2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。

    故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【点睛】
    本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
    16、x≥1.
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    根据题意得,x﹣1≥0,
    解得x≥1.
    故答案为x≥1.
    【点睛】
    本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.

    三、解答题(共8题,共72分)
    17、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
    (2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
    【详解】
    解:(1)如图:

    (2)∵四边形ABCD为矩形,
    ∴AD∥BC,
    ∴∠ADB=∠CBD,
    ∵EF垂直平分线段BD,
    ∴BO=DO,
    在△DEO和三角形BFO中,

    ∴△DEO≌△BFO(ASA),
    ∴DE=BF.
    考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
    18、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
    【解析】
    (1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
    (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
    【详解】
    (1)过B作BH⊥AE于H,
    Rt△ABH中,∠BAH=30°,
    ∴BH=AB=×20=10(米),
    即点B距水平面AE的高度BH为10米;
    (2)过B作BG⊥DE于G,
    ∵BH⊥HE,GE⊥HE,BG⊥DE,
    ∴四边形BHEG是矩形.
    ∵由(1)得:BH=10,AH=10,
    ∴BG=AH+AE=(10+30)米,
    Rt△BGC中,∠CBG=45°,
    ∴CG=BG=(10+30)米,
    ∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
    在Rt△AED中,
    =tan∠DAE=tan60°=,
    DE=AE=30
    ∴CD=CE﹣DE=10+40﹣30=40﹣20.
    答:宣传牌CD高约(40﹣20)米.

    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
    19、(1)y=(x﹣3)1﹣1;(1)11<x3+x4+x5<9+1.
    【解析】
    (1)利用二次函数解析式的顶点式求得结果即可;
    (1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.
    【详解】
    (1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)
    设二次函数表达式为:y=a(x﹣3)1﹣1.
    ∵该图象过A(1,0)
    ∴0=a(1﹣3)1﹣1,解得a=.
    ∴表达式为y=(x﹣3)1﹣1
    (1)如图所示:

    由已知条件可知直线与图形“G”要有三个交点
    1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,
    ∴x3+x4+x5>11,
    当直线过y=(x﹣3)1﹣1的图象顶点时,有1个交点,
    由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)1+1,
    ∴令(x﹣3)1+1=﹣1时,解得x=3+1或x=3﹣1(舍去)
    ∴x3+x4+x5<9+1.
    综上所述11<x3+x4+x5<9+1.
    【点睛】
    考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.
    20、3+3.5
    【解析】
    延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
    【详解】
    如图,延长ED交BC延长线于点F,则∠CFD=90°,

    ∵tan∠DCF=i=,
    ∴∠DCF=30°,
    ∵CD=4,
    ∴DF=CD=2,CF=CDcos∠DCF=4×=2,
    ∴BF=BC+CF=2+2=4,
    过点E作EG⊥AB于点G,
    则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
    又∵∠AED=37°,
    ∴AG=GEtan∠AEG=4•tan37°,
    则AB=AG+BG=4•tan37°+3.5=3+3.5,
    故旗杆AB的高度为(3+3.5)米.
    考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
    21、(1)200;(2)答案见解析;(3).
    【解析】
    (1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
    (2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.
    【详解】
    解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);
    故答案为:200;
    (2)C组人数:200-40-70-30=60(名)
    B组百分比:70÷200×100%=35%
    如图

    (3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
    画树状图得:

    ∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,
    ∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:.
    【点睛】
    此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
    22、景点A与B之间的距离大约为280米
    【解析】
    由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC和BC的长.
    【详解】
    解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,
    由题意,可得∠A=37°,∠B=45°,PA=200m.
    在Rt△ACP中,∵∠ACP=90°,∠A=37°,
    ∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.
    在Rt△BPC中,∵∠BCP=90°,∠B=45°,
    ∴BC=PC=1.
    ∴AB=AC+BC=160+1=280(米).
    答:景点A与B之间的距离大约为280米.

    【点睛】
    本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    23、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
    【解析】
    (1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
    (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
    (3)①△AGH的面积不变.理由三角形的面积公式计算即可;
    ②分三种情形分别求解即可解决问题.
    【详解】
    (1)∵四边形ABCD是正方形,
    ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
    ∴AC=,
    ∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
    ∴∠AHC=∠ACG.
    故答案为=.
    (2)结论:AC2=AG•AH.
    理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
    ∴△AHC∽△ACG,
    ∴,
    ∴AC2=AG•AH.
    (3)①△AGH的面积不变.
    理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
    ∴△AGH的面积为1.
    ②如图1中,当GC=GH时,易证△AHG≌△BGC,

    可得AG=BC=4,AH=BG=8,
    ∵BC∥AH,
    ∴,
    ∴AE=AB=.
    如图2中,当CH=HG时,

    易证AH=BC=4,
    ∵BC∥AH,
    ∴=1,
    ∴AE=BE=2.
    如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.

    在BC上取一点M,使得BM=BE,
    ∴∠BME=∠BEM=43°,
    ∵∠BME=∠MCE+∠MEC,
    ∴∠MCE=∠MEC=22.3°,
    ∴CM=EM,设BM=BE=m,则CM=EMm,
    ∴m+m=4,
    ∴m=4(﹣1),
    ∴AE=4﹣4(﹣1)=8﹣4,
    综上所述,满足条件的m的值为或2或8﹣4.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
    24、(1)DP=;(2)①;②.
    【解析】
    (1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
    (2)①先求出GH= 2,进而求出DG,再得出DH,即可得出结论;
    ②分两种情况,利用三角形的面积建立方程求解即可得出结论.
    【详解】
    解:(1)∵A(0,4),
    ∴OA=4,
    ∵P(t,0),
    ∴OP=t,
    ∵△ABD是由△AOP旋转得到,
    ∴△ABD≌△AOP,
    ∴AP=AD,∠DAB=∠PAO,
    ∴∠DAP=∠BAO=60°,
    ∴△ADP是等边三角形,
    ∴DP=AP,
    ∵ ,
    ∴,
    ∴;
    (2)①当t>0时,如图1,BD=OP=t,

    过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
    ∵△OAB为等边三角形,BE⊥y轴,
    ∴∠ABP=30°,AP=OP=2,
    ∵∠ABD=90°,
    ∴∠DBG=60°,
    ∴DG=BD•sin60°= ,
    ∵GH=OE=2,
    ∴ ,
    ∴ ;
    ②当t≤0时,分两种情况:
    ∵点D在x轴上时,如图2

    在Rt△ABD中,,
    (1)当 时,如图3,BD=OP=-t,,

    ∴,
    ∴,
    ∴或,
    ∴ 或,
    (2)当 时,如图4,

    BD=OP=-t,,
    ∴,

    ∴或(舍)
    ∴ .
    【点睛】
    此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.

    相关试卷

    徽省临泉重点达标名校2021-2022学年中考五模数学试题含解析: 这是一份徽省临泉重点达标名校2021-2022学年中考五模数学试题含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年山东省兰陵县中考数学对点突破模拟试卷含解析: 这是一份2022年山东省兰陵县中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了下列运算正确的是,下列事件中,必然事件是,方程的解是.等内容,欢迎下载使用。

    2021-2022学年徽省临泉重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2021-2022学年徽省临泉重点达标名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了化简的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map