2022年徽省临泉中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABE B.∠A=∠EBD
C.∠A=∠ABE D.∠C=∠ABC
2.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )
A. B. C. D.
3.下列运算正确的是( )
A.5a+2b=5(a+b) B.a+a2=a3
C.2a3•3a2=6a5 D.(a3)2=a5
4.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A. B. C. D.
5.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为( )
A. B. C.1 D.
6.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
7.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
8.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
9.若a与5互为倒数,则a=( )
A. B.5 C.-5 D.
10.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )
A.42 B.96 C.84 D.48
二、填空题(共7小题,每小题3分,满分21分)
11.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.
12.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)
13.若关于x的方程有增根,则m的值是 ▲
14.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”
15.一个多项式与的积为,那么这个多项式为 .
16.计算_______.
17.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm2(精确到1cm2).
三、解答题(共7小题,满分69分)
18.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
19.(5分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
20.(8分)化简求值:,其中x是不等式组的整数解.
21.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.
22.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.
(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小明一共统计了 个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是 ;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
23.(12分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
(1)求抛物线的解析式;
(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
24.(14分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;
B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;
C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;
D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.
故选C.
【点睛】
本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
2、C
【解析】
△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;
解:(1)当0<x≤1时,如图,
在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;
∵MN⊥AC,
∴MN∥BD;
∴△AMN∽△ABD,
∴=,
即,=,MN=x;
∴y=AP×MN=x2(0<x≤1),
∵>0,
∴函数图象开口向上;
(2)当1<x<2,如图,
同理证得,△CDB∽△CNM,=,
即=,MN=2-x;
∴y=
AP×MN=x×(2-x),
y=-x2+x;
∵-<0,
∴函数图象开口向下;
综上答案C的图象大致符合.
故选C.
本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.
3、C
【解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
【详解】
A、5a+2b,无法计算,故此选项错误;
B、a+a2,无法计算,故此选项错误;
C、2a3•3a2=6a5,故此选项正确;
D、(a3)2=a6,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
4、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
5、B
【解析】
由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE,
∴AB=DE=CD,即D为CE中点,
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠ECF=∠ABC,
∴tan∠ECF=tan∠ABC=,
在Rt△CFE中,EF=,tan∠ECF===,
∴CF=,
根据勾股定理得,CE==,
∴AB=CE=,
故选B.
【点睛】
本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键.
6、D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
详解:∵方程有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
7、A
【解析】
分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得:=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选A.
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
8、B
【解析】
分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
详解:由图形可知,与“前”字相对的字是“真”.
故选B.
点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
9、A
【解析】
分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
详解:根据题意可得:5a=1,解得:a=, 故选A.
点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
10、D
【解析】
由平移的性质知,BE=6,DE=AB=10,
∴OE=DE﹣DO=10﹣4=6,
∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
故选D.
【点睛】
本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
二、填空题(共7小题,每小题3分,满分21分)
11、1.
【解析】
根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
【详解】
根据题意分析可得:第1个图案中棋子的个数5个.
第2个图案中棋子的个数5+6=11个.
….
每个图形都比前一个图形多用6个.
∴第30个图案中棋子的个数为5+29×6=1个.
故答案为1.
【点睛】
考核知识点:图形的规律.分析出一般数量关系是关键.
12、10﹣
【解析】
过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.
【详解】
如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,
则点Pn+1的坐标为(2n+2,),
则OB=,
∵点P1的横坐标为2,
∴点P1的纵坐标为5,
∴AB=5﹣,
∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,
故答案为10﹣.
【点睛】
本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.
13、1.
【解析】
方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:
方程两边都乘以(x-2)得,2-x-m=2(x-2).
∵分式方程有增根,∴x-2=1,解得x=2.
∴2-2-m=2(2-2),解得m=1.
14、1
【解析】
本题主要考查了三角形的内角和定理.
解:根据三角形的内角和可知填:1.
15、
【解析】
试题分析:依题意知
=
考点:整式运算
点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
16、
【解析】
根据同底数幂的乘法法则计算即可.
【详解】
故答案是:
【点睛】
本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.
17、174cm1.
【解析】
直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,
∵BD×AO=AB×BO,BD=,
圆锥底面半径=BD=,圆锥底面周长=1×π,侧面面积=×1×π×11=.
点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.
三、解答题(共7小题,满分69分)
18、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
19、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
【解析】
(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
【详解】
(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
由题意得,,
∴m=1200,
经检验,m=1200是原分式方程的解,也符合题意,
∴m+300=1500元,
答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
∵,
∴33≤x≤38,
∵x为正整数,
∴x=34,35,36,37,38,
即:共有5种方案;
(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
当100<k<150时,y1随x的最大而增大,
∴x=38时,y1取得最大值,
即:购进电冰箱38台,空调62台,总利润最大,
当0<k<100时,y1随x的最大而减小,
∴x=34时,y1取得最大值,
即:购进电冰箱34台,空调66台,总利润最大,
当k=100时,无论采取哪种方案,y1恒为20000元.
【点睛】
本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
20、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.
【解析】
先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.
【详解】
原式=÷
=•
=,
解不等式组,
解不等式①,得:x>﹣4,
解不等式②,得:x≤﹣1,
∴不等式组的解集为﹣4<x≤﹣1,
∴不等式的整数解是﹣3,﹣2,﹣1.
又∵x+1≠0,x﹣1≠0∴x≠±1,
∴x=﹣3或x=﹣2,
当x=﹣3时,原式=﹣,
当x=﹣2时,原式=﹣1.
【点睛】
本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.
21、(1)画图见解析;(2)画图见解析;(3)20
【解析】
【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
【详解】(1)如图所示;
(2)如图所示;
(3)结合网格特点易得四边形AA1 B1 A2是正方形,
AA1=,
所以四边形AA1 B1 A2的面积为:=20,
故答案为20.
【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
22、(1)①150;②作图见解析;③13.3%;(2).
【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
【详解】
①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
②“好评”一共有150×60%=90(个),补全条形图如图1:
③图2中“差评”所占的百分比是:×100%=13.3%;
(2)列表如下:
好
中
差
好
好,好
好,中
好,差
中
中,好
中,中
中,差
差
差,好
差,中
差,差
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率是.
考点:扇形统计图;条形统计图;列表法与树状图法.
23、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).
【解析】
(1)应用待定系数法问题可解;
(2)①通过分类讨论研究△APQ和△CDO全等
②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.
【详解】
(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得
,
解得: ,
∴抛物线解析式为:y=-x2-x+3;
(2)①存在点D,使得△APQ和△CDO全等,
当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,
∴tan∠QAP=tan∠DCO,
,
∴,
∴OD=,
∴点D坐标为(-,0).
由对称性,当点D坐标为(,0)时,
由点B坐标为(4,0),
此时点D(,0)在线段OB上满足条件.
②∵OC=3,OB=4,
∴BC=5,
∵∠DCB=∠CDB,
∴BD=BC=5,
∴OD=BD-OB=1,
则点D坐标为(-1,0)且AD=BD=5,
连DN,CM,
则DN=DM,∠NDC=∠MDC,
∴∠NDC=∠DCB,
∴DN∥BC,
∴,
则点N为AC中点.
∴DN时△ABC的中位线,
∵DN=DM=BC=,
∴OM=DM-OD=
∴点M(,0)
【点睛】
本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.
24、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.
【解析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣2,
∴n=0﹣(﹣2)=2,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
当﹣2<m≤2时,n=2.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
2023-2024学年徽省临泉数学九年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年徽省临泉数学九年级第一学期期末质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,sin 30°的值为,已知a、b、c、d是比例线段等内容,欢迎下载使用。
徽省临泉2023-2024学年数学八年级第一学期期末检测模拟试题含答案: 这是一份徽省临泉2023-2024学年数学八年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,已知点与关于轴对称,则的值为,若x>y,则下列式子错误的是,如图,若,,,则的度数为等内容,欢迎下载使用。
徽省临泉2022-2023学年数学七下期末联考试题含答案: 这是一份徽省临泉2022-2023学年数学七下期末联考试题含答案,共6页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。