|试卷下载
搜索
    上传资料 赚现金
    黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析01
    黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析02
    黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析

    展开
    这是一份黑龙江省讷河市实验校2022年中考数学模拟精编试卷含解析,共21页。试卷主要包含了函数的自变量x的取值范围是,下列分式中,最简分式是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是(  )

    A.(3,1) B.(2,2) C.(1,3) D.(3,0)
    2.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则  

    A.明明的速度是80米分 B.第二次相遇时距离B地800米
    C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米
    3.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )

    A.52° B.38° C.42° D.60°
    4.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )
    A.2.8×105 B.2.8×106 C.28×105 D.0.28×107
    5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为(  )

    A.24 B.18 C.12 D.9
    6.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )

    A.18 B.22 C.24 D.46
    7.若kb<0,则一次函数的图象一定经过( )
    A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
    8.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )

    A.60° B.50° C.40° D.30°
    9.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    10.下列分式中,最简分式是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    12.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
    13.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.

    14.分解因式:x2y﹣xy2=_____.
    15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
    16.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
    (1)求m的值和一次函数的解析式;
    (2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
    (3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.

    18.(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:

    LED灯泡
    普通白炽灯泡
    进价(元)
    45
    25
    标价(元)
    60
    30
    (1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
    (2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?

    19.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

    20.(8分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
    (1)求抛物线的解析式;
    (2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
    (3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.

    21.(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
    22.(10分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
    [收集数据]
    从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:
    甲:

    乙:

    [整理、描述数据]按如下分数段整理、描述这两组样本数据:
    学校
    人数
    成绩











    (说明:优秀成绩为,良好成绩为合格成绩为.)
    [分析数据]两组样本数据的平均分、中位数、众数如下表所示:
    学校
    平均分
    中位数
    众数








    其中 .
    [得出结论]
    (1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)
    (2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;
    (3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;
    (至少从两个不同的角度说明推断的合理性)
    23.(12分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

    (1)求与之间的函数关系式;
    (2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
    (3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
    24.综合与实践﹣猜想、证明与拓广
    问题情境:
    数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
    猜想证明
    (1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:   ;
    (2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
    小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
    小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
    小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
    请你参考同学们的思路,完成证明;
    (3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
    联系拓广:
    (4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
    【详解】
    解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).

    故选:B.
    【点睛】
    此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    2、B
    【解析】
    C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;
    A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;
    B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;
    D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.
    【详解】
    解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,

    出发20分时两人第一次相遇,C选项错误;
    亮亮的速度为米分,
    两人的速度和为米分,
    明明的速度为米分,A选项错误;
    第二次相遇时距离B地距离为米,B选项正确;
    出发35分钟时两人间的距离为米,D选项错误.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.
    3、A
    【解析】
    试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.

    考点:平行线的性质.
    4、B
    【解析】
    分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:280万这个数用科学记数法可以表示为
    故选B.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    5、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    6、B
    【解析】
    连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.
    【详解】
    解:∵AD∥BC,
    ∴∠EAF=∠ACB,∠AFE=∠FBC;
    ∵∠AEF=∠BEC,
    ∴△AEF∽△BEC,
    ∴==,
    ∵△AEF与△EFC高相等,
    ∴S△EFC=3S△AEF,
    ∵点F是□ABCD的边AD上的三等分点,
    ∴S△FCD=2S△AFC,
    ∵△AEF的面积为2,
    ∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.
    故选B.
    【点睛】
    本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.
    7、D
    【解析】
    根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
    【详解】
    ∵kb<0,
    ∴k、b异号。
    ①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
    ②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
    综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
    故选:D
    【点睛】
    此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
    8、C
    【解析】
    试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
    考点:平行线的性质.
    9、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.
    10、A
    【解析】
    试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.
    考点:最简分式.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.
    12、>
    【解析】
    分别根据方差公式计算出甲、乙两人的方差,再比较大小.
    【详解】
    ∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
    故答案为:>.
    【点睛】
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    13、1:1
    【解析】
    根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.
    【详解】
    ∵S△BDE:S△CDE=1:3,
    ∴BE:EC=1:3,
    ∵DE∥AC,
    ∴△BED∽△BCA,
    ∴S△BDE:S△BCA=()2=1:16,
    ∴S△BDE:S四边形DECA=1:1,
    故答案为1:1.
    【点睛】
    本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
    14、xy(x﹣y)
    【解析】
    原式=xy(x﹣y).
    故答案为xy(x﹣y).
    15、20
    【解析】
    利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.
    【详解】
    设原来红球个数为x个,
    则有=,
    解得,x=20,
    经检验x=20是原方程的根.
    故答案为20.
    【点睛】
    本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.
    16、k>
    【解析】
    由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
    【详解】
    ∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
    ∴△>0,即(2k+1)2-4(k2+1)>0,
    解得k>,
    故答案为k>.
    【点睛】
    本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)y=1x﹣1(1)1(3)x>1
    【解析】
    试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
    (1)先确定B点坐标,然后根据三角形面积公式计算;
    (3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
    试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
    把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
    所以一次函数解析式为y=1x﹣1;
    (1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
    所以S△AOB=×1×1=1;
    (3)自变量x的取值范围是x>1.
    考点:两条直线相交或平行问题
    18、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
    【解析】
    1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
    (2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
    【详解】
    (1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
    解得
    答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
    (2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
    W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
    ∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
    ∵k=10>0,∴W随a的增大而增大,
    ∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
    答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
    【点睛】
    本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
    19、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    20、 (1)、y=-+x+4;(2)、不存在,理由见解析.
    【解析】
    试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
    试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
    ∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
    由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
    (2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
    ∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
    ∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
    令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
    ∴不存在满足条件的点F

    考点:二次函数的应用
    21、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
    【解析】
    过点A作AD⊥BC于点D,

    在Rt△ADC中,
    由得tanC=∴∠C=30°∴AD=AC=×240=120(米)
    在Rt△ABD中,∠B=45°∴AB=AD=120(米)
    120÷(240÷24)=120÷10=12(米/分钟)
    答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
    22、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析
    【解析】
    首先根据乙校的成绩结合众数的定义即可得出a的值;
    (1)根据两个学校成绩的中位数进一步判断即可;
    (2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;
    (3)根据题意,从平均数以及中位数两方面加以比较分析即可.
    【详解】
    由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,
    故答案为:80;
    (1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,
    ∵小明这次竞赛得了分,在他们学校排名属中游略偏上,
    ∴小明为甲校学生,
    故答案为:甲;
    (2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,
    故答案为:;
    (3)乙校竞赛成绩较好,理由如下:
    因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.
    【点睛】
    本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.
    23、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
    【解析】
    (1)可用待定系数法来确定y与x之间的函数关系式;
    (2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
    (3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
    【详解】
    (1)由题意得: .
    故y与x之间的函数关系式为:y=-10x+700,
    (2)由题意,得
    -10x+700≥240,
    解得x≤46,
    设利润为w=(x-30)•y=(x-30)(-10x+700),

    w=-10x2+1000x-21000=-10(x-50)2+4000,
    ∵-10<0,
    ∴x<50时,w随x的增大而增大,
    ∴x=46时,w大=-10(46-50)2+4000=3840,
    答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
    (3)w-150=-10x2+1000x-21000-150=3600,
    -10(x-50)2=-250,
    x-50=±5,
    x1=55,x2=45,
    如图所示,由图象得:
    当45≤x≤55时,捐款后每天剩余利润不低于3600元.
    【点睛】
    此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
    24、 (1) GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4) 90°﹣.
    【解析】
    (1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;
    (2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;
    (3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;
    (4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.
    【详解】
    解:(1)GF=GD,GF⊥GD,
    理由:∵四边形ABCD是正方形,
    ∴∠ABD=∠ADB=45°,∠BAD=90°,
    ∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,
    ∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,
    ∴∠DBF=90°,
    ∴GF⊥GD,
    ∵∠BAD=∠BAF=90°,
    ∴点F,A,D在同一条线上,
    ∵∠F=∠ADB,
    ∴GF=GD,
    故答案为GF=GD,GF⊥GD;
    (2)连接AF,∵点D关于直线AE的对称点为点F,
    ∴直线AE是线段DF的垂直平分线,
    ∴AF=AD,GF=GD,
    ∴∠1=∠2,∠3=∠FDG,
    ∴∠1+∠3=∠2+∠FDG,
    ∴∠AFG=∠ADG,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,
    设∠BAF=n,
    ∴∠FAD=90°+n,
    ∵AF=AD=AB,
    ∴∠FAD=∠ABF,
    ∴∠AFB+∠ABF=180°﹣n,
    ∴∠AFB+∠ADG=180°﹣n,
    ∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,
    ∴GF⊥DG,
    (3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,
    ∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,
    ∴∠FDG=∠BDC,
    ∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,
    ∴∠FDB=∠GDC,
    在Rt△BDC中,sin∠DFG==sin45°=,
    在Rt△BDC中,sin∠DBC==sin45°=,
    ∴,
    ∴,
    ∴△BDF∽△CDG,
    ∵∠FDB=∠GDC,
    ∴∠DGC=∠DFG=45°,
    ∴∠DGC=∠FDG,
    ∴CG∥DF;
    (4)90°﹣,理由:如图3,连接AF,BD,
    ∵点D与点F关于AE对称,
    ∴AE是线段DF的垂直平分线,
    ∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,
    ∴∠DAM=90°﹣∠2=90°﹣∠1,
    ∴∠DAF=2∠DAM=180°﹣2∠1,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∴∠AFB=∠ABF=∠DFG+∠1,
    ∵BD是菱形的对角线,
    ∴∠ADB=∠ABD=α,
    在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°
    ∴2∠DFG+2∠1+α﹣2∠1=180°,
    ∴∠DFG=90°﹣.

    【点睛】
    本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.

    相关试卷

    贵州省水城实验校2022年中考数学模拟精编试卷含解析: 这是一份贵州省水城实验校2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了计算﹣1﹣,二元一次方程组的解是,下列函数中,二次函数是,若点M等内容,欢迎下载使用。

    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析: 这是一份黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。

    黑龙江省哈尔滨双城区六校联考2022年中考数学模拟精编试卷含解析: 这是一份黑龙江省哈尔滨双城区六校联考2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,﹣22×3的结果是,尺规作图要求等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map