2022届黑龙江省大庆市林甸四中学中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.﹣23的相反数是( )
A.﹣8 B.8 C.﹣6 D.6
2.(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为( )
A. B. C. D.
3.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为( )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
4.如图,空心圆柱体的左视图是( )
A. B. C. D.
5.下列计算错误的是( )
A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
6.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
7.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30° B.40° C.50° D.60°
8.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )
A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13
9.的绝对值是( )
A.﹣4 B. C.4 D.0.4
10.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.
12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
13.对于一元二次方程,根的判别式中的表示的数是__________.
14.使有意义的x的取值范围是______.
15.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.
16.如图,五边形是正五边形,若,则__________.
17.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.
三、解答题(共7小题,满分69分)
18.(10分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
19.(5分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
(1)求两种机器人每台每小时各分拣多少件包裹;
(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?
20.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
求反比例函数和一次函数的表达式;求当时自变量的取值范围.
21.(10分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.
22.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
23.(12分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
(1)求证:BC平分∠DBA;
(2)若,求的值.
24.(14分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
∵=﹣8,﹣8的相反数是8,∴的相反数是8,
故选B.
2、D
【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故选D.
点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.
3、D
【解析】
试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
故选D
点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
4、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
5、C
【解析】
解:A、a•a=a2,正确,不合题意;
B、2a+a=3a,正确,不合题意;
C、(a3)2=a6,故此选项错误,符合题意;
D、a3÷a﹣1=a4,正确,不合题意;
故选C.
【点睛】
本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.
6、C
【解析】
科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
【详解】
解:由科学记数法可知:250000 m2=2.5×105m2,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
7、B
【解析】
试题解析:∵AB∥CD,且
∴在中,
故选B.
8、A
【解析】
试题解析:∵原来的平均数是13岁,
∴13×23=299(岁),
∴正确的平均数a=≈12.97<13,
∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,
∴b=13;
故选A.
考点:1.平均数;2.中位数.
9、B
【解析】
分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
详解:因为-的相反数为
所以-的绝对值为.
故选:B
点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
10、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
二、填空题(共7小题,每小题3分,满分21分)
11、或5或1.
【解析】
根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
【详解】
解:如图
(1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
则AN=3,AC=,AD=m,
得:,得m=,
综上所述:m为或5或1,
所以答案:或5或1.
【点睛】
本题主要考查等腰三角形的性质,注意分类讨论的完整性.
12、1.
【解析】
因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
【详解】
设这些书有x本,
由题意得,,
解得:x=1,
答:这些书有1本.
故答案为:1.
【点睛】
本题考查了比例的性质,正确的列出比例式是解题的关键.
13、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
14、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
15、CD的中点
【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
【详解】
∵△ADE旋转后能与△BEC重合,
∴△ADE≌△BEC,
∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△DEC是等腰直角三角形,
∴D与E,E与C是对应顶点,
∵CD的中点到D,E,C三点的距离相等,
∴旋转中心是CD的中点,
故答案为:CD的中点.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
16、72
【解析】
分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.
详解:延长AB交于点F,
∵,
∴∠2=∠3,
∵五边形是正五边形,
∴∠ABC=108°,
∴∠FBC=72°,
∠1-∠2=∠1-∠3=∠FBC=72°
故答案为:72°.
点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.
17、4cm.
【解析】
由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
【详解】
由题意知OD⊥AB,交AB于点E,
∵AB=16cm,
∴BC=AB=×16=8cm,
在Rt△OBE中,
∵OB=10cm,BC=8cm,
∴OC=(cm),
∴CD=OD-OC=10-6=4(cm)
故答案为4cm.
【点睛】
本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.
三、解答题(共7小题,满分69分)
18、1
【解析】
根据实数的混合计算,先把各数化简再进行合并.
【详解】
原式=1+3-2-3+2
=1
【点睛】
此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
19、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
【解析】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
(2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
【详解】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
由题意得,,
解得,,
答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
由题意得,30a+40(200﹣a)≥7000,
解得:a≤100,则最多应购进A种机器人100台.
【点睛】
本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
20、 (1) ,;(2)或.
【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
【详解】
(1)把代入得.
∴反比例函数的表达式为
把和代入得,
解得
∴一次函数的表达式为.
(2)由得
∴当或时,.
【点睛】
本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
21、 (1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【解析】
(1)直接利用位似图形的性质得出对应点位置进而得出答案;
(2)利用(1)中所画图形进而得出答案.
【详解】
(1)如图所示:△OA1B1,△OA2B2,即为所求;
(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【点睛】
此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.
22、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
【解析】
分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:
,
解得:.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后购买这批粽子比不打折节省了3640元.
点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
23、 (1)证明见解析;(2)
【解析】
分析:
(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
详解:
(1)证明:连结OC,
∵DE与⊙O相切于点C,
∴OC⊥DE.
∵BD⊥DE,
∴OC∥BD. .
∴∠1=∠2,
∵OB=OC,
∴∠1=∠3,
∴∠2=∠3,
即BC平分∠DBA. .
(2)∵OC∥BD,
∴△EBD∽△EOC,△DBM∽△OCM,.
∴,
∴,
∵,设EA=2k,AO=3k,
∴OC=OA=OB=3k.
∴.
点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
24、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
2023年黑龙江省大庆市中考数学模拟试卷(含解析): 这是一份2023年黑龙江省大庆市中考数学模拟试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省大庆市杜尔伯特县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份黑龙江省大庆市杜尔伯特县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了计算的结果是等内容,欢迎下载使用。
2022届黑龙江省大庆市林甸四中学中考联考数学试题含解析: 这是一份2022届黑龙江省大庆市林甸四中学中考联考数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,计算3的结果是等内容,欢迎下载使用。