|试卷下载
搜索
    上传资料 赚现金
    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析01
    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析02
    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析

    展开
    这是一份黑龙江省哈尔滨松北区七校联考2021-2022学年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    3.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    4.下列运算正确的是 ( )
    A.2+a=3 B. =
    C. D.=
    5.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )

    A.30° B.35° C.40° D.50°
    6.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是(  )

    A. B. C. D.
    7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    8.当ab>0时,y=ax2与y=ax+b的图象大致是(  )
    A. B. C. D.
    9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为(  )
    A.y=x+1 B.y=x-1 C.y=x D.y=x-2
    10.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )

    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.

    12.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .

    13.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.

    14.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.
    15.分解因式:3m2﹣6mn+3n2=_____.
    16.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.

    17.已知:正方形 ABCD.
    求作:正方形 ABCD 的外接圆.
    作法:如图,
    (1)分别连接 AC,BD,交于点 O;
    (2)以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.
    请回答:该作图的依据是__________________________________.

    三、解答题(共7小题,满分69分)
    18.(10分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
    (1)⊙O的半径为6,OP=1.
    ①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
    ②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
    (2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
    (3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.

    19.(5分)(1)计算:
    (2)化简:
    20.(8分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).

    21.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

    22.(10分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
    (1)填空:  ;
    (2)如图1,连接,作,垂足为,求的长度;
    (3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

    23.(12分)(1)计算:;
    (2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
    24.(14分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
    (1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为   ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为   ;若点P(a,b),则点P的“旋转对应点”P'的坐标为   ;
    (2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
    (3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
    【详解】
    ∵点A(a,-b)在第一象限内,
    ∴a>0,-b>0,
    ∴b<0,
    ∴点B((a,b)在第四象限,
    故选D.
    【点睛】
    本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
    2、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    3、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    4、D
    【解析】
    根据整式的混合运算计算得到结果,即可作出判断.
    【详解】
    A、2与a 不是同类项,不能合并,不符合题意;
    B、 =,不符合题意;
    C、原式=,不符合题意;
    D、=,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    5、C
    【解析】
    试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.

    考点:平行线的性质.
    6、D
    【解析】
    设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
    【详解】
    设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
    ∵△ABC放大到原来的2倍得到△A′B′C,
    ∴2(﹣1﹣x)=a+1,
    解得x=﹣(a+3),
    故选:D.
    【点睛】
    本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
    7、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    8、D
    【解析】
    ∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;
    当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.
    故选B.
    9、A
    【解析】向左平移一个单位长度后解析式为:y=x+1.
    故选A.
    点睛:掌握一次函数的平移.
    10、A
    【解析】
    试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;
    【详解】
    设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,

    作A1M⊥FA交FA的延长线于M,
    在Rt△AMA1中,∵∠MAA1=60°,
    ∴∠MA1A=30°,
    ∴AM=AA1=a,
    ∴MA1=AA1·cos30°=a,FM=5a,
    在Rt△A1FM中,FA1=,
    ∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,
    ∴△F1FL∽△A1FA,
    ∴,
    ∴,
    ∴FL=a,F1L=a,
    根据对称性可知:GA1=F1L=a,
    ∴GL=2a﹣a=a,
    ∴S六边形GHIJKI:S六边形ABCDEF=()2=,
    故答案为:.
    【点睛】
    本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.
    12、2
    【解析】
    试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
    考点:反比例函数系数k的几何意义.
    13、1
    【解析】
    解:∵正六边形ABCDEF的边长为3,
    ∴AB=BC=CD=DE=EF=FA=3,
    ∴弧BAF的长=3×6﹣3﹣3═12,
    ∴扇形AFB(阴影部分)的面积=×12×3=1.
    故答案为1.
    【点睛】
    本题考查正多边形和圆;扇形面积的计算.
    14、y=2(x+1)2+1.
    【解析】
    原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);
    可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
    15、3(m-n)2
    【解析】
    原式==
    故填:
    16、1.
    【解析】
    解:∵平移后解析式是y=x﹣b,
    代入y=得:x﹣b=,
    即x2﹣bx=5,
    y=x﹣b与x轴交点B的坐标是(b,0),
    设A的坐标是(x,y),
    ∴OA2﹣OB2
    =x2+y2﹣b2
    =x2+(x﹣b)2﹣b2
    =2x2﹣2xb
    =2(x2﹣xb)
    =2×5=1,
    故答案为1.
    点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
    17、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【解析】
    利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.
    【详解】
    ∵四边形 ABCD 为正方形,
    ∴OA=OB=OC=OD,
    ∴⊙O 为正方形的外接圆.
    故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.

    三、解答题(共7小题,满分69分)
    18、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.
    【解析】
    【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;
    ②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;
    (2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;
    (3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.
    【详解】(1)①如图1所示:连接OA、OB、OP,

    ∵OA=OB,P为AB的中点,
    ∴OP⊥AB,
    ∵在△PBO中,由勾股定理得:PB==2,
    ∴PA=PB=2,
    ∴⊙O的“幂值”=2×2=20,
    故答案为:20;
    ②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:
    如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,

    ∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
    ∴△APA′∽△B′PB,
    ∴,
    ∴PA•PB=PA′•PB′=20,
    ∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;
    (2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,

    ∵AO=OB,PO⊥AB,
    ∴AP=PB,
    ∴点P关于⊙O的“幂值”=AP•PB=PA2,
    在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
    ∴关于⊙O的“幂值”=r2﹣d2,
    故答案为:点P关于⊙O的“幂值”为r2﹣d2;
    (3)如图1所示:过点C作CP⊥AB,

    ∵CP⊥AB,AB的解析式为y=x+b,
    ∴直线CP的解析式为y=﹣x+.
    联立AB与CP,得,
    ∴点P的坐标为(﹣﹣b,+b),
    ∵点P关于⊙C的“幂值”为6,
    ∴r2﹣d2=6,
    ∴d2=3,即(﹣﹣b)2+(+b)2=3,
    整理得:b2+2b﹣9=0,
    解得b=﹣3或b=,
    ∴b的取值范围是﹣3≤b≤,
    故答案为:﹣3≤b≤.
    【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.
    19、(1);(2)-1;
    【解析】
    (1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
    (2)根据分式的除法和减法可以解答本题.
    【详解】
    (1)

    =
    =2-.
    (2)
    =
    =
    =
    =
    =-1
    【点睛】
    本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
    20、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
    【解析】
    如图,过A作AF⊥CD于点F,

    在Rt△BCD中,∠DBC=60°,BC=30m,
    ∵=tan∠DBC,
    ∴CD=BC•tan60°=30m,
    ∴乙建筑物的高度为30m;
    在Rt△AFD中,∠DAF=45°,
    ∴DF=AF=BC=30m,
    ∴AB=CF=CD﹣DF=(30﹣30)m,
    ∴甲建筑物的高度为(30﹣30)m.
    21、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
    【解析】
    (1)求出点A的坐标,利用待定系数法即可解决问题;
    (2)构造二次函数,利用二次函数的性质即可解决问题.
    【详解】
    解:(1)∵直线y=2x+6经过点A(1,m),
    ∴m=2×1+6=8,
    ∴A(1,8),
    ∵反比例函数经过点A(1,8),
    ∴8=,
    ∴k=8,
    ∴反比例函数的解析式为y=.
    (2)由题意,点M,N的坐标为M(,n),N(,n),
    ∵0<n<6,
    ∴<0,
    ∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
    ∴n=3时,△BMN的面积最大.
    22、(1)1;(2);(3)x时,y有最大值,最大值.
    【解析】
    (1)只要证明△OBC是等边三角形即可;
    (2)求出△AOC的面积,利用三角形的面积公式计算即可;
    (3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    【详解】
    (1)由旋转性质可知:OB=OC,∠BOC=1°,
    ∴△OBC是等边三角形,
    ∴∠OBC=1°.
    故答案为1.
    (2)如图1中.

    ∵OB=4,∠ABO=30°,
    ∴OAOB=2,ABOA=2,
    ∴S△AOC•OA•AB2×2.
    ∵△BOC是等边三角形,
    ∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC,
    ∴OP.
    (3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.

    则NE=ON•sin1°x,
    ∴S△OMN•OM•NE1.5xx,
    ∴yx2,
    ∴x时,y有最大值,最大值.
    ②当x≤4时,M在BC上运动,N在OB上运动.

    作MH⊥OB于H.
    则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
    ∴yON×MHx2+2x.
    当x时,y取最大值,y,
    ③当4<x≤4.8时,M、N都在BC上运动,

    作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
    ∴y•MN•OG=12x,
    当x=4时,y有最大值,最大值=2.
    综上所述:y有最大值,最大值为.
    【点睛】
    本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    23、(1);(1)1.
    【解析】
    (1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;
    (1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.
    【详解】
    (1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;
    (1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,
    当a﹣b=时,
    原式=()1=1.
    【点睛】
    本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.
    24、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
    【解析】
    (1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
    ②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
    ③当P(a,b)时,同①的方法得,即可得出结论;
    (2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
    (3)先确定出yPP'=x+3,即可得出结论.
    【详解】
    解:(1)如图1,

    ①当P(﹣4,2)时,
    ∵PA⊥y轴,
    ∴∠PAH=90°,OA=2,PA=4,
    由旋转知,P'A=4,∠PAP'=60°,
    ∴∠P'AH=30°,
    在Rt△P'AH中,P'H=P'A=2,
    ∴AH=P'H=2,
    ∴OH=OA+AH=2+2,
    ∴P'(﹣2,2+2),
    ②当P'(﹣5,16)时,
    在Rt△P'AH中,∠P'AH=30°,P'H=5,
    ∴P'A=10,AH=5,
    由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
    ∴P(﹣10,16﹣5),
    ③当P(a,b)时,同①的方法得,P'(,b﹣a),
    故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
    (2)如图2,过点Q作QB⊥y轴于B,

    ∴∠BQQ'=60°,
    由题意知,△PAP'是等边三角形,
    ∴∠PAP'=∠PP'A=60°,
    ∵QB⊥y轴,PA⊥y轴,
    ∴QB∥PA,
    ∴∠P'QQ'=∠PAP'=60°,
    ∴∠P'QQ'=60°=∠PP'A,
    ∴PP'∥QQ';
    (3)设yPP'=kx+b',
    由题意知,k=,
    ∵直线经过点(,6),
    ∴b'=3,
    ∴yPP'=x+3,
    令y=0,
    ∴x=﹣,
    ∴直线PP'与x轴的交点坐标(﹣,0).
    【点睛】
    此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.

    相关试卷

    黑龙江省哈尔滨双城区六校联考2022年中考数学模拟精编试卷含解析: 这是一份黑龙江省哈尔滨双城区六校联考2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,﹣22×3的结果是,尺规作图要求等内容,欢迎下载使用。

    黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是等内容,欢迎下载使用。

    2022年黑龙江省哈尔滨松北区四校联考中考数学模拟试题含解析: 这是一份2022年黑龙江省哈尔滨松北区四校联考中考数学模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,的倒数的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map