|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析
    立即下载
    加入资料篮
    河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析01
    河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析02
    河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析

    展开
    这是一份河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集是,已知抛物线c等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是(  )

    A.2011﹣2014年最高温度呈上升趋势
    B.2014年出现了这6年的最高温度
    C.2011﹣2015年的温差成下降趋势
    D.2016年的温差最大
    2.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )

    A.4 B.9 C.12 D.16
    3.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标(  )

    A. B.
    C. D.
    4.不等式组的解集是 (  )
    A.x>-1 B.x>3
    C.-1<x<3 D.x<3
    5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    6.“射击运动员射击一次,命中靶心”这个事件是( )
    A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
    7.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是(  )

    A.3m B. m C. m D.4m
    8.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    9.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

    A. B. C. D.
    10.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如果,那么______.
    12.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
    13.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.

    14.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米

    15.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
    16.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.

    17.分解因式:ax2-a=______.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
    (1)求点A的坐标;
    (2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.

    19.(5分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.

    20.(8分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
    (1)通过计算,判断AD2与AC•CD的大小关系;
    (2)求∠ABD的度数.

    21.(10分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
    (1)若∠G=48°,求∠ACB的度数;
    (1)若AB=AE,求证:∠BAD=∠COF;
    (3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.

    22.(10分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?
    23.(12分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    24.(14分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    利用折线统计图结合相应数据,分别分析得出符合题意的答案.
    【详解】
    A选项:年最高温度呈上升趋势,正确;
    B选项:2014年出现了这6年的最高温度,正确;
    C选项:年的温差成下降趋势,错误;
    D选项:2016年的温差最大,正确;
    故选C.
    【点睛】
    考查了折线统计图,利用折线统计图获取正确信息是解题关键.
    2、B
    【解析】
    由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
    【详解】
    ∵ED∥BC,
    ∴△ABC∽△ADE,
    ∴ =,
    ∴ ==,
    即AE=9;
    ∴AE=9.
    故答案选B.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    3、C
    【解析】
    由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
    B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
    C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
    【详解】
    ∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
    ∴A、D选项不符合题意;
    B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
    ∴B选项不符合题意;
    C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
    ∴C选项符合题意.
    故选:C.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
    4、B
    【解析】
    根据解不等式组的方法可以求得原不等式组的解集.
    【详解】

    解不等式①,得x>-1,
    解不等式②,得x>1,
    由①②可得,x>1,
    故原不等式组的解集是x>1.
    故选B.
    【点睛】
    本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
    5、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.
    6、D
    【解析】
    试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
    故选D.
    考点:随机事件.
    7、B
    【解析】
    因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
    【详解】
    解:∵sin∠CAB=
    ∴∠CAB=45°.
    ∵∠C′AC=15°,
    ∴∠C′AB′=60°.
    ∴sin60°=,
    解得:B′C′=3.
    故选:B.
    【点睛】
    此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
    8、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    9、B
    【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】分三种情况:
    ①当P在AB边上时,如图1,
    设菱形的高为h,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x的增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选B.

    【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.
    10、C
    【解析】
    试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
    考点:二次函数图象与几何变换.

    二、填空题(共7小题,每小题3分,满分21分)
    11、;
    【解析】
    先对等式进行转换,再求解.
    【详解】

    ∴3x=5x-5y
    ∴2x=5y

    【点睛】
    本题考查的是分式,熟练掌握分式是解题的关键.
    12、3.308×1.
    【解析】
    正确用科学计数法表示即可.
    【详解】
    解:33080=3.308×1
    【点睛】
    科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
    13、
    【解析】
    过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
    【详解】
    如图,过点D作DF⊥BC于点F,

    ∵四边形ABCD是菱形,
    ∴BC=CD,AD∥BC,
    ∵∠DEB=90°,AD∥BC,
    ∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
    ∴四边形DEBF是矩形,
    ∴DF=BE,DE=BF,
    ∵点C的横坐标为5,BE=3DE,
    ∴BC=CD=5,DF=3DE,CF=5﹣DE,
    ∵CD2=DF2+CF2,
    ∴25=9DE2+(5﹣DE)2,
    ∴DE=1,
    ∴DF=BE=3,
    设点C(5,m),点D(1,m+3),
    ∵反比例函数y=图象过点C,D,
    ∴5m=1×(m+3),
    ∴m=,
    ∴点C(5,),
    ∴k=5×=,
    故答案为:
    【点睛】
    本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
    14、
    【解析】
    由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就
    是直线y=8与抛物线两交点的横坐标差的绝对值.
    故有,
    即,,.
    所以两盏警示灯之间的水平距离为:
    15、>
    【解析】
    分别根据方差公式计算出甲、乙两人的方差,再比较大小.
    【详解】
    ∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
    故答案为:>.
    【点睛】
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    16、
    【解析】
    利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
    【详解】
    当y=0时,有x-=0,
    解得:x=1,
    ∴点B1的坐标为(1,0),
    ∵A1OB1为等边三角形,
    ∴点A1的坐标为(,).
    当y=时.有x-=,
    解得:x=,
    ∴点B2的坐标为(,),
    ∵A2A1B2为等边三角形,
    ∴点A2的坐标为(,).
    同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
    故答案为;.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
    17、
    【解析】
    先提公因式,再套用平方差公式.
    【详解】
    ax2-a=a(x2-1)=
    故答案为:
    【点睛】
    掌握因式分解的一般方法:提公因式法,公式法.

    三、解答题(共7小题,满分69分)
    18、(1)A(4,3);(2)28.
    【解析】
    (1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
    【详解】
    解:(1)由题意得: ,解得,
    ∴点A的坐标为(4,3).
    (2)过点A作x轴的垂线,垂足为D,

    在Rt△OAD中,由勾股定理得,

    ∴.
    ∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
    ∴,解得a=8.
    ∴.
    19、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
    【解析】
    试题分析:利用关于点对称的性质得出的坐标进而得出答案;
    利用关于原点位似图形的性质得出对应点位置进而得出答案.
    试题解析:(1)△A1BC1如图所示.

    (2)△A2B2C2如图所示,点C2的坐标为(-6,4).
    20、(1)AD2=AC•CD.(2)36°.
    【解析】
    试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
    (2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
    设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
    试题解析:(1)∵AD=BC=,∴==.
    ∵AC=1,∴CD==,∴;
    (2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
    设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
    考点:相似三角形的判定与性质.
    21、(1)48°(1)证明见解析(3)
    【解析】
    (1)连接CD,根据圆周角定理和垂直的定义可得结论;
    (1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
    (3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
    【详解】
    (1)连接CD,
    ∵AD是⊙O的直径,
    ∴∠ACD=90°,
    ∴∠ACB+∠BCD=90°,
    ∵AD⊥CG,
    ∴∠AFG=∠G+∠BAD=90°,
    ∵∠BAD=∠BCD,
    ∴∠ACB=∠G=48°;
    (1)∵AB=AE,
    ∴∠ABE=∠AEB,
    ∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
    由(1)得:∠G=∠ACB,
    ∴∠BCG=∠DAC,
    ∴,
    ∵AD是⊙O的直径,AD⊥PC,
    ∴,
    ∴,
    ∴∠BAD=1∠DAC,
    ∵∠COF=1∠DAC,
    ∴∠BAD=∠COF;
    (3)过O作OG⊥AB于G,设CF=x,
    ∵tan∠CAF== ,
    ∴AF=1x,
    ∵OC=OA,由(1)得:∠COF=∠OAG,
    ∵∠OFC=∠AGO=90°,
    ∴△COF≌△OAG,
    ∴OG=CF=x,AG=OF,
    设OF=a,则OA=OC=1x﹣a,
    Rt△COF中,CO1=CF1+OF1,
    ∴(1x﹣a)1=x1+a1,
    a=x,
    ∴OF=AG=x,
    ∵OA=OB,OG⊥AB,
    ∴AB=1AG=x,
    ∴.

    【点睛】
    圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
    22、2,1
    【解析】
    根据题意得出不等式组,解不等式组求得其解集即可.
    【详解】
    根据题意得,
    解不等式①,得:x≤1,
    解不等式②,得:x>1,
    则不等式组的解集为1<x≤1,
    ∴x可取的整数值是2,1.
    【点睛】
    本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.
    23、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    24、这棵树CD的高度为8.7米
    【解析】
    试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.
    试题解析:∵∠CBD=∠A+∠ACB,
    ∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,
    ∴∠A=∠ACB,
    ∴BC=AB=10(米).
    在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).
    答:这棵树CD的高度为8.7米.
    考点:解直角三角形的应用

    相关试卷

    2023年河南省郑州市桐柏一中中考数学模拟试卷(含解析): 这是一份2023年河南省郑州市桐柏一中中考数学模拟试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省南阳市桐柏县中考数学一模试卷(含解析): 这是一份2023年河南省南阳市桐柏县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省郑州市桐柏一中学2021-2022学年中考数学适应性模拟试题含解析: 这是一份河南省郑州市桐柏一中学2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔,估计5﹣的值应在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map