2021-2022学年河南省郑州市桐柏一中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为( )
A.16cm B.20cm C.24cm D.28cm
2.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
3.下面运算正确的是( )
A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
4.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
A. B. C. D.
5.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A. B. C. D.
6.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )
A.91,88 B.85,88 C.85,85 D.85,84.5
7.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )
A.
B.
C.
D.
8.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
9.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )
A.12 B.11 C.10 D.9
10.下列计算正确的是( )
A.3a2﹣6a2=﹣3
B.(﹣2a)•(﹣a)=2a2
C.10a10÷2a2=5a5
D.﹣(a3)2=a6
二、填空题(共7小题,每小题3分,满分21分)
11.因式分解:=_______________.
12.已知函数y=-1,给出一下结论:
①y的值随x的增大而减小
②此函数的图形与x轴的交点为(1,0)
③当x>0时,y的值随x的增大而越来越接近-1
④当x≤时,y的取值范围是y≥1
以上结论正确的是_________(填序号)
13.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.
其中正确的是______.(填序号)
14.若式子在实数范围内有意义,则x的取值范围是 .
15.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.
16.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
17.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)
三、解答题(共7小题,满分69分)
18.(10分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)
19.(5分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
20.(8分)先化简,再求值:(1+)÷,其中x=+1.
21.(10分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
22.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
23.(12分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D
(1)求证:DE是的⊙O切线;
(2)若AB=6,BG=4,求BE的长;
(3)若AB=6,CE=1.2,请直接写出AD的长.
24.(14分)(1)计算:;
(2)化简,然后选一个合适的数代入求值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
【详解】
∵长方形ABCD中,AB∥CD,
∴∠BAC=∠DCA,
又∵∠BAC=∠EAC,
∴∠EAC=∠DCA,
∴FC=AF=25cm,
又∵长方形ABCD中,DC=AB=32cm,
∴DF=DC-FC=32-25=7cm,
在直角△ADF中,AD==24(cm).
故选C.
【点睛】
本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.
2、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
3、D
【解析】
分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
【详解】
解:A,,故此选项错误;
B,,故此选项错误;
C,,故此选项错误;
D,,故此选项正确.
所以D选项是正确的.
【点睛】
灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
4、C
【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
【详解】
解:列表得:
| A | B | C | D | E |
A | AA | BA | CA | DA | EA |
B | AB | BB | CB | DB | EB |
C | AC | BC | CC | DC | EC |
D | AD | BD | CD | DD | ED |
E | AE | BE | CE | DE | EE |
∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
∴恰好选择从同一个口进出的概率为=,
故选C.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
5、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
6、D
【解析】
试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
考点:众数,中位数
点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
7、B
【解析】
试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B
考点:三视图
8、C
【解析】
解:,故选C.
9、A
【解析】
根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.
【详解】
∵一个正多边形的每个内角为150°,
∴这个正多边形的每个外角=180°﹣150°=30°,
∴这个正多边形的边数==1.
故选:A.
【点睛】
本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.
10、B
【解析】
根据整式的运算法则分别计算可得出结论.
【详解】
选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;
选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;
选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;
选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.
故答案选B.
考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.
二、填空题(共7小题,每小题3分,满分21分)
11、a(a+b)(a-b).
【解析】
分析:本题考查的是提公因式法和利用平方差公式分解因式.
解析:原式= a(a+b)(a-b).
故答案为a(a+b)(a-b).
12、②③
【解析】
(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;
(2)由解得:,
∴的图象与x轴的交点为(1,0),故②中结论正确;
(3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;
(4)因为在中,当时,,故④中结论错误;
综上所述,正确的结论是②③.
故答案为:②③.
13、①②④
【解析】
①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断
②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明
③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明
④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确
【详解】
由旋转,可知:∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°,
∴∠BAF+∠BAE=∠EAF=45°,结论①正确;
②由旋转,可知:AD=AF
在△AED和△AEF中,
∴△AED≌△AEF(SAS),结论②正确;
③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°两个条件,
无法证出△ABE∽△ACD,结论③错误;
④由旋转,可知:CD=BF,∠ACD=∠ABF=45°,
∴∠EBF=∠ABE+∠ABF=90°,
∴BF1+BE1=EF1.
∵△AED≌△AEF,
EF=DE,
又∵CD=BF,
∴BE1+DC1=DE1,结论④正确.
故答案为:①②④
【点睛】
本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键
14、.
【解析】
根据二次根式被开方数必须是非负数的条件,
要使在实数范围内有意义,必须.
故答案为
15、2
【解析】
试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
在直角△OCE中,
则AE=OA−OE=5−3=2.
故答案为2.
16、
【解析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
【详解】
列表如下:
| ﹣2 | ﹣1 | 2 |
﹣2 |
| 2 | ﹣4 |
﹣1 | 2 |
| ﹣2 |
2 | ﹣4 | ﹣2 |
|
由表可知,共有6种等可能结果,其中积为正数的有2种结果,
所以积为正数的概率为,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
17、①②③
【解析】
试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵DE是AB的垂直平分线,
∴EA=EB,
∴∠EBA=∠A=36°,
∴∠EBC=36°,
∴∠EBA=∠EBC,
∴BE平分∠ABC,①正确;
∠BEC=∠EBA+∠A=72°,
∴∠BEC=∠C,
∴BE=BC,
∴AE=BE=BC,②正确;
△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;
∵BE>EC,AE=BE,
∴AE>EC,
∴点E不是AC的中点,④错误,
故答案为①②③.
考点:线段垂直平分线的性质;等腰三角形的判定与性质.
三、解答题(共7小题,满分69分)
18、米
【解析】
解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.
∵∠DEC=90°,
∴四边形DECF是矩形,
∴DE=FC.
∵∠HBA=∠BAC=45°,
∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.
又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,
∴△ADB是等腰三角形.
∴AD=BD=180(米).
在Rt△AED中,sin∠DAE=sin30°=,
∴DE=180•sin30°=180×=90(米),
∴FC=90米,
在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,
∴BF=180•sin60°=180×(米).
∴BC=BF+FC=90+90=90(+1)(米).
答:小山的高度BC为90(+1)米.
19、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
【解析】
【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
则,解得 ,
∴,
∵蜜柚销售不会亏本,∴,
又,∴ ,∴,
∴ ;
(2) 设利润为元,
则
=
=,
∴ 当 时, 最大为1210,
∴ 定价为19元时,利润最大,最大利润是1210元;
(3) 当 时,,
110×40=4400<4800,
∴不能销售完这批蜜柚.
【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
20、,1+
【解析】
运用公式化简,再代入求值.
【详解】
原式=
=
= ,
当x=+1时,
原式=.
【点睛】
考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
21、甲、乙两公司人均捐款分别为80元、100元.
【解析】
试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
试题解析:
设甲公司人均捐款x元
解得:
经检验,为原方程的根, 80+20=100
答:甲、乙两公司人均各捐款为80元、100元.
22、米.
【解析】
先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.
【详解】
由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,
设抛物线的表达式为:y=ax2+bx+1(a≠0),
则据题意得:,
解得:,
∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,
∵y=﹣(x﹣4)2+,
∴飞行的最高高度为:米.
【点睛】
本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.
23、(1)证明见解析;(1);(3)1.
【解析】
(1)要证明DE是的⊙O切线,证明OG⊥DE即可;
(1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;
(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.
【详解】
证明:(1)如图,连接OG,GB,
∵G是弧AF的中点,
∴∠GBF=∠GBA,
∵OB=OG,
∴∠OBG=∠OGB,
∴∠GBF=∠OGB,
∴OG∥BC,
∴∠OGD=∠GEB,
∵DE⊥CB,
∴∠GEB=90°,
∴∠OGD=90°,
即OG⊥DE且G为半径外端,
∴DE为⊙O切线;
(1)∵AB为⊙O直径,
∴∠AGB=90°,
∴∠AGB=∠GEB,且∠GBA=∠GBE,
∴△GBA∽△EBG,
∴,
∴;
(3)AD=1,根据SAS可知△AGB≌△CGB,
则BC=AB=6,
∴BE=4.8,
∵OG∥BE,
∴,即,
解得:AD=1.
【点睛】
本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.
24、(1)0;(2),答案不唯一,只要x≠±1,0即可,当x=10时,.
【解析】
(1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;
(2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可.
【详解】
解:(1)原式=
=1﹣3+2+1﹣1
=0;
(2)原式=
=
由题意可知,x≠1
∴当x=10时,
原式=
=.
【点睛】
本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键.
河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析: 这是一份河南省郑州市桐柏一中学2021-2022学年中考五模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集是,已知抛物线c等内容,欢迎下载使用。
河南省郑州市桐柏一中学2021-2022学年中考数学适应性模拟试题含解析: 这是一份河南省郑州市桐柏一中学2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔,估计5﹣的值应在等内容,欢迎下载使用。
2022届河南省郑州市郑东新区九制实验校中考押题数学预测卷含解析: 这是一份2022届河南省郑州市郑东新区九制实验校中考押题数学预测卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若与 互为相反数,则x的值是等内容,欢迎下载使用。