河南省洛阳市涧西区东方二中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将2001×1999变形正确的是( )
A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
2.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
3.下列命题中错误的有( )个
(1)等腰三角形的两个底角相等
(2)对角线相等且互相垂直的四边形是正方形
(3)对角线相等的四边形为矩形
(4)圆的切线垂直于半径
(5)平分弦的直径垂直于弦
A.1 B.2 C.3 D.4
4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
5.若分式有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≠3 D.x=3
6.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
7.对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同 B.数据B的波动小一些
C.它们的平均水平不相同 D.数据A的波动小一些
8.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
9.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B.a C. D.
10.关于的分式方程解为,则常数的值为( )
A. B. C. D.
11.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
12.下列运算正确的是( )
A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
14.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
15.计算:|-3|-1=__.
16.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.
17.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.
18.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
20.(6分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
21.(6分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
(1)求证:PC是⊙O的切线;
(2)设OP=AC,求∠CPO的正弦值;
(3)设AC=9,AB=15,求d+f的取值范围.
22.(8分)如图,已知二次函数的图象经过,两点.
求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
23.(8分)如图,在四边形中,为一条对角线,,,.为的中点,连结.
(1)求证:四边形为菱形;
(2)连结,若平分,,求的长.
24.(10分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.
请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.
25.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
26.(12分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:
(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?
(2)扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图.
(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率.
27.(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.
球
两红
一红一白
两白
礼金券(元)
18
24
18
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
原式变形后,利用平方差公式计算即可得出答案.
【详解】
解:原式=(2000+1)×(2000-1)=20002-1,
故选A.
【点睛】
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
2、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
3、D
【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
详解:等腰三角形的两个底角相等,(1)正确;
对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
对角线相等的平行四边形为矩形,(3)错误;
圆的切线垂直于过切点的半径,(4)错误;
平分弦(不是直径)的直径垂直于弦,(5)错误.
故选D.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
5、C
【解析】
试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
考点:分式有意义的条件.
6、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
7、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
8、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
9、A
【解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
∴MG=CG=×a=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
10、D
【解析】
根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
【详解】
解:把x=4代入方程,得
,
解得a=1.
经检验,a=1是原方程的解
故选D.
点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
11、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
12、D
【解析】
试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
D、原式=﹣3,正确,故选D
考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
14、60°.
【解析】
先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
【详解】
∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,
∴∠A=∠B=60°.
∴∠C=180°-∠A-∠B=180°-60°-60°=60°.
故答案为60°.
【点睛】
本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
15、2
【解析】
根据有理数的加减混合运算法则计算.
【详解】
解:|﹣3|﹣1=3-1=2.
故答案为2.
【点睛】
考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.
16、 .
【解析】
如图,过点P作PH⊥OB于点H,
∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,
∴9=m2,且m>0,解得,m=3.∴PH=OH=3.
∵△PAB是等边三角形,∴∠PAH=60°.
∴根据锐角三角函数,得AH=.∴OB=3+
∴S△POB=OB•PH=.
17、.
【解析】
根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.
【详解】
∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,
∴从中任意摸出一个球恰好是红球的概率为: ,
故答案为.
【点睛】
本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
18、2或2.
【解析】
解:本题有两种情形:
(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;
(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.
故答案为2或2.
点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、这个圆形截面的半径为10cm.
【解析】
分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.
解答:解:如图,OE⊥AB交AB于点D,
则DE=4,AB=16,AD=8,
设半径为R,
∴OD=OE-DE=R-4,
由勾股定理得,OA2=AD2+OD2,
即R2=82+(R-4)2,
解得,R=10cm.
20、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
【解析】
试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
答:孔明同学测试成绩位90分,平时成绩为95分;
(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
答:他的测试成绩应该至少为1分.
考点:一元一次不等式的应用;二元一次方程组的应用.
21、(1)详见解析;(2);(3)
【解析】
(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
【详解】
(1)连接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切线,AB是⊙O的直径,
∴∠OBP=90°,
在△POC与△POB中,
,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切线;
(2)过O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD•OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP•OP=OC2
∴,
∴sin∠CPO=;
(3)连接BC,
∵AB是⊙O的直径,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
当CM⊥AB时,
d=AM,f=BM,
∴d+f=AM+BM=1,
当M与B重合时,
d=9,f=0,
∴d+f=9,
∴d+f的取值范围是:9≤d+f≤1.
【点睛】
本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
22、见解析
【解析】
(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
【详解】
(1)把,代入得
,
解得.
∴这个二次函数解析式为.
(2)∵抛物线对称轴为直线,
∴的坐标为,
∴,
∴.
【点睛】
本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
23、(1)证明见解析;(2)AC=;
【解析】
(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;
【详解】
(1)证明:∵AD=2BC,E为AD的中点,
∴DE=BC,
∵AD∥BC,
∴四边形BCDE是平行四边形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四边形BCDE是菱形.
(2)连接AC,如图所示:
∵∠ADB=30°,∠ABD=90°,
∴AD=2AB,
∵AD=2BC,
∴AB=BC,
∴∠BAC=∠BCA,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠CAB=∠CAD=30°
∴AB=BC=DC=1,AD=2BC=2,
∵∠DAC=30°,∠ADC=60°,
在Rt△ACD中,AC=.
【点睛】
考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.
24、(1)35%,126;(2)见解析;(3)1344人
【解析】
(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;
(2)求出3小时以上的人数,补全条形统计图即可;
(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.
【详解】
(1)根据题意得:1﹣(40%+18%+7%)=35%,
则“玩游戏”对应的圆心角度数是360°×35%=126°,
故答案为35%,126;
(2)根据题意得:40÷40%=100(人),
∴3小时以上的人数为100﹣(2+16+18+32)=32(人),
补全图形如下:
;
(3)根据题意得:2100×=1344(人),
则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.
【点睛】
本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.
25、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
26、(1)50万人;(2)43.2°;统计图见解析(3).
【解析】
(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;
(2)先用360°乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待
游客数补全条形统计图;
(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概
率公式进行计算,即可得到同时选择去同一景点的概率.
【详解】
解:(1)该市景点共接待游客数为:15÷30%=50(万人);
(2)扇形统计图中E景点所对应的圆心角的度数是:×360°=43.2°,
B景点的人数为50×24%=12(万人)、D景点的人数为50×18%=9(万人),
补全条形统计图如下:
故答案为43.2°;
(3)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴P(同时选择去同一个景点)
【点睛】
本题考查的是统计以及用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
27、 (1)见解析 (2)选择摇奖
【解析】
试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较大小即可.
试题解析:
(1)树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
∴摇出一红一白的概率=;
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴摇奖的平均收益是:×18+×24+×18=22,
∵22>20,
∴选择摇奖.
【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
2023年河南省洛阳市涧西区东方二中中考数学二模试卷(含解析): 这是一份2023年河南省洛阳市涧西区东方二中中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市育才中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份重庆市育才中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列因式分解正确的是,下列各组数中,互为相反数的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
2021-2022学年贵港市重点中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年贵港市重点中学初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了下列函数是二次函数的是等内容,欢迎下载使用。