|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析01
    2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析02
    2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年重庆市宜宾市中学初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线y=ax2+bx+c,我市连续7天的最高气温为等内容,欢迎下载使用。

    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小B.平均数变小,方差变大
    C.平均数变大,方差变小D.平均数变大,方差变大
    2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为( )
    A.15°B.55°C.65°D.75°
    3.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
    A.相交B.相切C.相离D.不能确定
    4.据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )
    A.B.C.D.
    5.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
    A.1个B.2个C.3个D.4个
    6.已知反比例函数y=﹣,当﹣3<x<﹣2时,y的取值范围是( )
    A.0<y<1B.1<y<2C.2<y<3D.﹣3<y<﹣2
    7.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )
    A.40B.46C.48D.50
    8.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30°B.30°,28°C.31°,30°D.30°,30°
    9.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
    A.2人B.16人
    C.20人D.40人
    10.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )
    A.y1B.y2C.y3D.y4
    11.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
    A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BC
    C.AB=CD,AD=BCD.∠DAB+∠BCD=180°
    12.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
    A.B.
    C.D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如果,那么=_____.
    14.如图,在平面直角坐标系中,函数y=(x>0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为________.
    15.已知二次函数的图像与轴交点的横坐标是和,且,则________.
    16.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.
    17.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm
    18.计算:|﹣5|﹣=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,.
    (1)求证:直线为的切线;
    (2)求证:;
    (3)若,,求的长.
    20.(6分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
    求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
    21.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
    22.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
    规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
    规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
    小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
    23.(8分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.
    24.(10分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).
    25.(10分)解方程:.
    26.(12分)已知.
    (1)化简A;
    (2)如果a,b 是方程的两个根,求A的值.
    27.(12分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
    (1)求新传送带AC的长度;
    (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    2、D
    【解析】
    根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
    【详解】
    解:∵∠CDE=165°,∴∠ADE=15°,
    ∵DE∥AB,∴∠A=∠ADE=15°,
    ∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
    故选D.
    【点睛】
    本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
    3、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.
    4、D
    【解析】
    科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    解:6 590 000=6.59×1.
    故选:D.
    【点睛】
    本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.
    5、C
    【解析】
    ①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
    ②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
    ③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    【详解】
    :①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴-=1,
    ∴b=-2a,
    ∴4a+2b=0,结论①错误;
    ②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
    ∴a-b+c=3a+c=0,
    ∴a=-.
    又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
    ∴2≤c≤3,
    ∴-1≤a≤-,结论②正确;
    ③∵a<0,顶点坐标为(1,n),
    ∴n=a+b+c,且n≥ax2+bx+c,
    ∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
    又∵a<0,
    ∴抛物线开口向下,
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    故选C.
    【点睛】
    本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
    6、C
    【解析】
    分析:
    由题意易得当﹣3<x<﹣2时,函数的图象位于第二象限,且y随x的增大而增大,再计算出当x=-3和x=-2时对应的函数值,即可作出判断了.
    详解:
    ∵在中,﹣6<0,
    ∴当﹣3<x<﹣2时函数的图象位于第二象限内,且y随x的增大而增大,
    ∵当x=﹣3时,y=2,当x=﹣2时,y=3,
    ∴当﹣3<x<﹣2时,2<y<3,
    故选C.
    点睛:熟悉“反比例函数的图象和性质”是正确解答本题的关键.
    7、C
    【解析】
    ∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
    ∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
    ∴∠ABD=∠ACF,
    又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
    ∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
    ∵BF=AB+AF=12,∴3AF=12,∴AF=4,
    ∴AB=AC=2AF=8,
    ∴S△FBC= ×BF×AC=×12×8=48,故选C.
    8、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    9、C
    【解析】
    先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
    【详解】
    400×人.
    故选C.
    【点睛】
    考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
    10、A
    【解析】
    由图象的点的坐标,根据待定系数法求得解析式即可判定.
    【详解】
    由图象可知:
    抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
    抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
    抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
    抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
    综上,解析式中的二次项系数一定小于1的是y1
    故选A.
    【点睛】
    本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
    11、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:
    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    12、D
    【解析】
    因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
    根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
    可以列出方程:.
    故选D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题解析:
    设a=2t,b=3t,

    故答案为:
    14、2
    【解析】
    设矩形OABC中点B的坐标为,
    ∵点E、F是AB、BC的中点,
    ∴点E、F的坐标分别为:、,
    ∵点E、F都在反比例函数的图象上,
    ∴S△OCF==,S△OAE=,
    ∴S矩形OABC=,
    ∴S四边形OEBF= S矩形OABC- S△OAE-S△OCF=.
    即四边形OEBF的面积为2.
    点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则S△OPD=.
    15、-12
    【解析】
    令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.
    【详解】
    解:∵二次函数的图像与轴交点的横坐标是和,
    令y=0,得方程,
    则和即为方程的两根,
    ∴,,
    ∵,
    两边平方得:,
    ∴,
    即,解得:,
    故答案为:.
    【点睛】
    本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.
    16、1
    【解析】
    由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
    【详解】
    解:第1行1个数,第2行2个数,第3行3个数,…,
    ∴第9行9个数,
    ∴第10行第8个数为第1+2+3+…+9+8=1个数.
    又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
    ∴第10行第8个数应该是1.
    故答案为:1.
    【点睛】
    本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
    17、1π+1.
    【解析】
    分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.
    详解:由题意得,OC=AC=OA=15,
    的长==20π,
    的长==10π,
    ∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),
    故答案为1π+1.
    点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键.
    18、1
    【解析】
    分析:直接利用二次根式以及绝对值的性质分别化简得出答案.
    详解:原式=5-3
    =1.
    故答案为1.
    点睛:此题主要考查了实数运算,正确化简各数是解题关键.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)证明见解析;(3)1.
    【解析】
    (1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;
    (2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
    【详解】
    (1)连接OB,
    ∵PB是⊙O的切线,
    ∴∠PBO=90°.
    ∵OA=OB,BA⊥PO于D,
    ∴AD=BD,∠POA=∠POB.
    又∵PO=PO,
    ∴△PAO≌△PBO.
    ∴∠PAO=∠PBO=90°,
    ∴直线PA为⊙O的切线.
    (2)由(1)可知,,


    =90,


    ,即,
    是直径,
    是半径



    整理得;
    (3)是中点,是中点,
    是的中位线,



    是直角三角形,
    在中,,



    ,则,
    、是半径,

    在中,,,
    由勾股定理得:
    ,即,
    解得:或(舍去),


    【点睛】
    本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
    20、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
    【解析】
    (1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
    (2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
    (3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
    【详解】
    (1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
    ∴a=-1,b=-1,
    ∴A(-1,3),B(3,-1),
    ∵点A(-1,3)在反比例函数y=上,
    ∴k=-1×3=-3,
    ∴反比例函数解析式为y=;
    (2)设点P(n,-n+2),
    ∵A(-1,3),
    ∴C(-1,0),
    ∵B(3,-1),
    ∴D(3,0),
    ∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
    ∵S△ACP=S△BDP,
    ∴×3×|n+1|=×1×|3−n|,
    ∴n=0或n=−3,
    ∴P(0,2)或(−3,5);
    (3)设M(m,0)(m>0),
    ∵A(−1,3),B(3,−1),
    ∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
    ∵△MAB是等腰三角形,
    ∴①当MA=MB时,
    ∴(m+1)2+9=(m−3)2+1,
    ∴m=0,(舍)
    ②当MA=AB时,
    ∴(m+1)2+9=32,
    ∴m=−1+或m=−1−(舍),
    ∴M(−1+,0)
    ③当MB=AB时,(m−3)2+1=32,
    ∴m=3+或m=3−(舍),
    ∴M(3+,0)
    即:满足条件的M(−1+,0)或(3+,0).
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
    21、1.
    【解析】
    根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
    【详解】
    解:
    =
    =
    =
    =
    当x=2时,原式==1.
    【点睛】
    本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
    22、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
    【解析】
    (1)利用列举法,列举所有的可能情况即可;
    (2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
    【详解】
    (1)所有可能出现的结果如下:,,,,,,,,共9种;
    (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
    ∴在规划1中,(小黄赢);
    红心牌点数是黑桃牌点数的整倍数有4种可能,
    ∴在规划2中,(小黄赢).
    ∵,∴小黄要在游戏中获胜,小黄会选择规则1.
    【点睛】
    考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    23、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;
    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;
    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cs∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.
    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    24、(6+2)米
    【解析】
    根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
    【详解】
    由题意可知∠BAD=∠ADB=45°,
    ∴FD=EF=6米,
    在Rt△PEH中,
    ∵tanβ==,
    ∴BF==5,
    ∴PG=BD=BF+FD=5+6,
    ∵tanβ= ,
    ∴CG=(5+6)·=5+2,
    ∴CD=(6+2)米.
    【点睛】
    本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
    25、x=,x=﹣2
    【解析】
    方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】

    则2x(x+1)=3(1﹣x),
    2x2+5x﹣3=0,
    (2x﹣1)(x+3)=0,
    解得:x1=,x2=﹣3,
    检验:当x=,x=﹣2时,2(x+1)(1﹣x)均不等于0,
    故x=,x=﹣2都是原方程的解.
    【点睛】
    本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.
    26、(1);(2)-.
    【解析】
    (1)先通分,再根据同分母的分式相加减求出即可;
    (2)根据根与系数的关系即可得出结论.
    【详解】
    (1)A=﹣
    =
    =;
    (2)∵a,b 是方程的两个根,∴a+b=4,ab=-12,∴.
    【点睛】
    本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.
    27、(1)5.6
    (2)货物MNQP应挪走,理由见解析.
    【解析】
    (1)如图,作AD⊥BC于点D
    Rt△ABD中,
    AD=ABsin45°=4
    在Rt△ACD中,∵∠ACD=30°
    ∴AC=2AD=4
    即新传送带AC的长度约为5.6米.
    (2)结论:货物MNQP应挪走.
    在Rt△ABD中,BD=ABcs45°=4
    在Rt△ACD中,CD=ACcs30°=
    ∴CB=CD—BD=
    ∵PC=PB—CB ≈4—2.1=1.9<2
    ∴货物MNQP应挪走.
    相关试卷

    重庆市育才中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份重庆市育才中学2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列因式分解正确的是,下列各组数中,互为相反数的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    重庆市江北新区联盟2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份重庆市江北新区联盟2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列说法正确的是,下列方程中有实数解的是等内容,欢迎下载使用。

    重庆市大渡口区2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份重庆市大渡口区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map