|试卷下载
终身会员
搜索
    上传资料 赚现金
    【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份【新东方】江西省南昌市十校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    2.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )
    A. B. C. D.
    3.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
    其中正确的结论个数为( )

    A.4 B.3 C.2 D.1
    4.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为(  )cm.
    A. B. C. D.
    5.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    6.下列等式从左到右的变形,属于因式分解的是
    A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
    C.4x2+8x-4=4x D.4my-2=2(2my-1)
    7.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为(  )

    A.8073 B.8072 C.8071 D.8070
    8.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为  

    A.6 B.8 C.10 D.12
    9.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
    A.1 B.-6 C.2或-6 D.不同于以上答案
    10.已知反比例函数,下列结论不正确的是(  )
    A.图象经过点(﹣2,1) B.图象在第二、四象限
    C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.

    12.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是 __________.

    13.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:





    平均数(cm)
    561
    560
    561
    560
    方差s2(cm2)
    3.5
    3.5
    15.5
    16.5
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.
    14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.

    (以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
    请根据上图完成这个推论的证明过程.
    证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
    S矩形EBMF=S△ABC-(______________+______________).
    易知,S△ADC=S△ABC,______________=______________,______________=______________.
    可得S矩形NFGD=S矩形EBMF.
    15.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    16.若关于的一元二次方程有实数根,则的取值范围是________.
    三、解答题(共8题,共72分)
    17.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

    (1)求证:DE⊥AG;
    (1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
    ①在旋转过程中,当∠OAG′是直角时,求α的度数;
    ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
    18.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.

    19.(8分)已知:如图,∠ABC,射线BC上一点D,
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.

    20.(8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    21.(8分)(1)计算:sin45°
    (2)解不等式组:
    22.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)

    23.(12分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).

    24.如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.
    (1)求证:△CDF≌△ADE;
    (2)若AF=1,求四边形ABCO的周长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    2、B
    【解析】
    由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ∵a<0,
    ∴抛物线的开口方向向下,
    故第三个选项错误;
    ∵c<0,
    ∴抛物线与y轴的交点为在y轴的负半轴上,
    故第一个选项错误;
    ∵a<0、b>0,对称轴为x=>0,
    ∴对称轴在y轴右侧,
    故第四个选项错误.
    故选B.
    3、B
    【解析】
    试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
    ③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
    ④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
    ⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
    综上所述,正确的结论有①③⑤,共3个,故选B.

    考点:四边形综合题.
    4、B
    【解析】
    分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
    详解:由题意可得圆锥的母线长为:24cm,
    设圆锥底面圆的半径为:r,则2πr=,
    解得:r=10,
    故这个圆锥的高为:(cm).
    故选B.
    点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
    5、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    6、D
    【解析】
    根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
    【详解】
    解:A、是整式的乘法,故A不符合题意;
    B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
    C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
    D、把一个多项式转化成几个整式积的形式,故D符合题意;
    故选D.
    【点睛】
    本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
    7、A
    【解析】
    观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.
    【详解】
    解:观察图形的变化可知:
    第1个图案中涂有阴影的小正方形个数为:5=4×1+1;
    第2个图案中涂有阴影的小正方形个数为:9=4×2+1;
    第3个图案中涂有阴影的小正方形个数为:13=4×3+1;

    发现规律:
    第n个图案中涂有阴影的小正方形个数为:4n+1;
    ∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.
    故选:A.
    【点睛】
    本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.
    8、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
    故选C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    9、C
    【解析】
    解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
    ②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
    故选C.
    点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
    10、D
    【解析】
    A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
    B选项:因为-2<0,图象在第二、四象限,故本选项正确;
    C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
    D选项:当x>0时,y<0,故本选项错误.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、64°
    【解析】
    解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
    点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
    12、1
    【解析】
    根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.
    【详解】
    设E点坐标为(t,),
    ∵AE:EB=1:3,
    ∴B点坐标为(4t,),
    ∴矩形OABC的面积=4t•=1.
    故答案是:1.
    【点睛】
    考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    13、甲
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    ∵ ,
    ∴从甲和丙中选择一人参加比赛,
    ∵ ,
    ∴选择甲参赛,
    故答案为甲.
    【点睛】
    此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    14、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
    【解析】
    根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
    【详解】
    S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
    易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
    可得S矩形NFGD=S矩形EBMF.
    故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
    【点睛】
    本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
    15、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
    16、
    【解析】
    由题意可得,△=9-4m≥0,由此求得m的范围.
    【详解】
    ∵关于x的一元二次方程x2-3x+m=0有实数根,
    ∴△=9-4m≥0,
    求得 m≤.
    故答案为:
    【点睛】
    本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.

    三、解答题(共8题,共72分)
    17、(1)见解析;(1)30°或150°,的长最大值为,此时.
    【解析】
    (1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
    ②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
    【详解】
    (1)如图1,延长ED交AG于点H,

    ∵点O是正方形ABCD两对角线的交点,
    ∴OA=OD,OA⊥OD,
    ∵OG=OE,
    在△AOG和△DOE中,

    ∴△AOG≌△DOE,
    ∴∠AGO=∠DEO,
    ∵∠AGO+∠GAO=90°,
    ∴∠GAO+∠DEO=90°,
    ∴∠AHE=90°,
    即DE⊥AG;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:
    (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
    ∵OA=OD=OG=OG′,
    ∴在Rt△OAG′中,sin∠AG′O==,
    ∴∠AG′O=30°,
    ∵OA⊥OD,OA⊥AG′,
    ∴OD∥AG′,
    ∴∠DOG′=∠AG′O=30°∘,
    即α=30°;

    (Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
    同理可求∠BOG′=30°,
    ∴α=180°−30°=150°.
    综上所述,当∠OAG′=90°时,α=30°或150°.
    ②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

    ∵正方形ABCD的边长为1,
    ∴OA=OD=OC=OB=,
    ∵OG=1OD,
    ∴OG′=OG=,
    ∴OF′=1,
    ∴AF′=AO+OF′=+1,
    ∵∠COE′=45°,
    ∴此时α=315°.
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
    18、 (1)见解析;(2).
    【解析】
    (1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;
    (2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.
    【详解】
    (1)证明:连接OD,
    由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,
    ∴∠ODH=∠DHA=90°,
    ∴OD∥CA,
    ∴∠C=∠ODB,
    ∵OD=OB,
    ∴∠OBD=∠ODB,
    ∴∠OBD=∠C,
    ∵∠OBD=∠DEC,
    ∴∠C=∠DEC,
    ∴DC=DE;
    (2)解:由(1)可知:OD∥AC,
    ∴∠ODF=∠AEF,
    ∵∠OFD=∠AFE,
    ∴△OFD∽△AFE,
    ∴,
    ∵AE=1,
    ∴OD=,
    ∴⊙O的半径为.

    【点睛】
    本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.
    19、见解析.
    【解析】
    根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
    【详解】
    ∵点P在∠ABC的平分线上,
    ∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
    ∵点P在线段BD的垂直平分线上,
    ∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
    如图所示:

    【点睛】
    本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.
    20、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    21、(1);(2)﹣2<x≤1.
    【解析】
    (1)根据绝对值、特殊角的三角函数值可以解答本题;
    (2)根据解一元一次不等式组的方法可以解答本题.
    【详解】
    (1)sin45°
    =3-+×-5+×
    =3-+3-5+1
    =7--5;
    (2)(2)
    由不等式①,得
    x>-2,
    由不等式②,得
    x≤1,
    故原不等式组的解集是-2<x≤1.
    【点睛】
    本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
    22、52
    【解析】
    根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.
    【详解】

    如图,过点C作CF⊥AB于点F.
    设塔高AE=x,
    由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,
    在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,
    则,
    在Rt△ABD中,∠ADB=45°,AB=x+56,
    则BD=AB=x+56,
    ∵CF=BD,
    ∴,
    解得:x=52,
    答:该铁塔的高AE为52米.
    【点睛】
    本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.
    23、AB≈3.93m.
    【解析】
    想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.
    【详解】
    ∵AC=BC,D是AB的中点,
    ∴CD⊥AB,
    又∵CD=1米,∠A=27°,
    ∴AD=CD÷tan27°≈1.96,
    ∴AB=2AD,
    ∴AB≈3.93m.
    【点睛】
    本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.
    24、(1)详见解析;(2)
    【解析】
    (1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;
    (2)连接AC,利用正方形的性质和四边形周长解答即可.
    【详解】
    (1)证明:∵四边形ABCD是正方形
    ∴CD=AD,∠ADC=90°,
    ∵△CDE和△DAF都是等腰直角三角形,
    ∴FD= AD,DE=CD,∠ADF=∠CDE=45°,
    ∴∠CDF=∠ADE=135°,FD=DE,
    ∴△CDF≌△ADE(SAS);
    (2)如图,连接AC.

    ∵四边形ABCD是正方形,
    ∴∠ACD=∠DAC=45°,
    ∵△CDF≌△ADE,
    ∴∠DCF=∠DAE,
    ∴∠OAC=∠OCA,
    ∴OA=OC,
    ∵∠DCE=45°,
    ∴∠ACE=90°,
    ∴∠OCE=∠OEC,
    ∴OC=OE,
    ∵AF=FD=1,
    ∴AD=AB=BC=,
    ∴AC=2,
    ∴OA+OC=OA+OE=AE= ,
    ∴四边形ABCO的周长AB+BC+OA+OC= .
    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.

    相关试卷

    江西省南昌市初中教育集团化联盟重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份江西省南昌市初中教育集团化联盟重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算4+等内容,欢迎下载使用。

    2022届江西省南昌市初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届江西省南昌市初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,4的平方根是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map