|试卷下载
终身会员
搜索
    上传资料 赚现金
    贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析01
    贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析02
    贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析

    展开
    这是一份贵州省遵义市桐梓县私立达兴中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为(  )
    A. B. C. D.
    2.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是

    A. B. C. D.
    3.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为

    A. B.3 C.1 D.
    4.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为(  )
    A.0.21×108 B.21×106 C.2.1×107 D.2.1×106
    5.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )

    A.1 B.2 C.3 D.4
    6.下列计算正确的是( )
    A.2x﹣x=1 B.x2•x3=x6
    C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
    7.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
    A. B. C. D.
    8.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
    ①;
    ②当0<x<3时,;
    ③如图,当x=3时,EF=;
    ④当x>0时,随x的增大而增大,随x的增大而减小.
    其中正确结论的个数是( )

    A.1 B.2 C.3 D.4
    9.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是  .
    A. B. C. D.
    10.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    二、填空题(共7小题,每小题3分,满分21分)
    11.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
    12.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.

    13.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .

    14.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
    15.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).

    16.化简:_____________.
    17.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.

    三、解答题(共7小题,满分69分)
    18.(10分)综合与探究
    如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
    (1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
    (2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
    ①当点G与点D重合时,求平移距离m的值;
    ②用含x的式子表示平移距离m,并求m的最大值;
    (3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.

    19.(5分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?

    20.(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

    21.(10分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
    22.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.

    23.(12分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
    (1)①已知O为坐标原点,点,,则_________,_________;
    ②点C在直线上,求出的最小值;
    (2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.

    24.(14分)已知,关于 x的一元二次方程(k﹣1)x2+x+3=0 有实数根,求k的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.
    【详解】
    ∵甲、乙两人分别以4m/s和5m/s的速度,
    ∴两人的相对速度为1m/s,
    设乙的奔跑时间为t(s),所需时间为20s,
    两人距离20s×1m/s=20m,
    故选B.
    【点睛】
    此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.
    2、D
    【解析】
    由圆锥的俯视图可快速得出答案.
    【详解】
    找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
    【点睛】
    本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
    3、A
    【解析】
    首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
    【详解】
    ∵AB=3,AD=4,∴DC=3
    ∴根据勾股定理得AC=5
    根据折叠可得:△DEC≌△D′EC,
    ∴D′C=DC=3,DE=D′E
    设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
    在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
    解得:x=
    故选A.
    4、D
    【解析】
    2100000=2.1×106.
    点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    5、B
    【解析】
    根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
    【详解】
    解:∵反比例函数的图象位于一三象限,
    ∴m>0
    故①错误;
    当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
    将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
    ∵m>0
    ∴h<k
    故③正确;
    将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
    故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
    故④正确,
    故选:B.
    【点睛】
    本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.
    6、D
    【解析】
    根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、2x-x=x,错误;
    B、x2•x3=x5,错误;
    C、(m-n)2=m2-2mn+n2,错误;
    D、(-xy3)2=x2y6,正确;
    故选D.
    【点睛】
    考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
    7、C
    【解析】
    画树状图得:

    ∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
    ∴两次抽取的卡片上的数字之积为正偶数的概率是:.
    故选C.
    【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
    8、C
    【解析】
    试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;
    ∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;
    当x=3时,,,即EF==,选项③正确;
    当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.
    考点:反比例函数与一次函数的交点问题.
    9、D
    【解析】
    根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的平均数是2,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
    ∵数据x1,x2,x3,x4,x5的方差为,
    ∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
    故选D.
    【点睛】
    本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
    10、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
    故答案是:.
    12、1
    【解析】
    根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.
    【详解】
    解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,
    ∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,
    ∴CO⊥AB,∠CAB=10°,
    则∠AOD+∠COE=90°,
    ∵∠DAO+∠AOD=90°,
    ∴∠DAO=∠COE,
    又∵∠ADO=∠CEO=90°,
    ∴△AOD∽△OCE,
    ∴ =tan60°= ,
    ∴= =1,
    ∵点A是双曲线y=- 在第二象限分支上的一个动点,
    ∴S△AOD=×|xy|= ,
    ∴S△EOC= ,即×OE×CE=,
    ∴k=OE×CE=1,
    故答案为1.

    【点睛】
    本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.
    13、3
    【解析】
    试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.

    考点:3.菱形的性质;3.解直角三角形;3.网格型.
    14、6
    【解析】
    设这个扇形的半径为,根据题意可得:
    ,解得:.
    故答案为.
    15、.
    【解析】
    用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
    【详解】
    由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
    故答案为:28%.
    【点睛】
    本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    16、
    【解析】
    根据分式的运算法则即可求解.
    【详解】
    原式=.
    故答案为:.
    【点睛】
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    17、2
    【解析】
    解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,

    ∵AB=AC,点E为BD的中点,且AD=AB,
    ∴设BE=DE=x,则AD=AF=1x.
    ∵DG⊥AC,EF⊥AC,
    ∴DG∥EF,∴,即,解得.
    ∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
    又∵DF∥BC,∴∠DFG=∠C,
    ∴Rt△DFG∽Rt△ACH,∴,即,解得.
    在Rt△ABH中,由勾股定理,得.
    ∴.
    又∵△ADF∽△ABC,∴,

    ∴.
    故答案为:2.

    三、解答题(共7小题,满分69分)
    18、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
    【解析】
    (3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
    ②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
    (2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
    【详解】
    解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
    解得:,
    ∴抛物线的表达式为y=﹣x3+x+2,
    把E(﹣4,y)代入得:y=﹣6,
    ∴点E的坐标为(﹣4,﹣6).
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
    解得:,
    ∴直线BD的表达式为y=x﹣2.
    把x=0代入y=x﹣2得:y=﹣2,
    ∴D(0,﹣2).
    当点G与点D重合时,G的坐标为(0,﹣2).
    ∵GF∥x轴,
    ∴F的纵坐标为﹣2.
    将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
    解得:x=+3或x=﹣+3.
    ∵﹣4<x<4,
    ∴点F的坐标为(﹣+3,﹣2).
    ∴m=FG=﹣3.
    ②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
    ∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
    ∵﹣<0,
    ∴m有最大值,
    当x=0时,m的最大值为4.
    (2)当点F在x轴的左侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
    ∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
    解得:x=﹣3或x=4(舍去),
    ∴点F的坐标为(﹣3,0).
    当点F在x轴的右侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
    ∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
    解得:x=﹣3或x=﹣﹣3(舍去),
    ∴点F的坐标为(﹣3,).
    综上所述,点F的坐标为(﹣3,0)或(﹣3,).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    19、裁掉的正方形的边长为2dm,底面积为12dm2.
    【解析】
    试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
    试题解析:
    设裁掉的正方形的边长为xdm,
    由题意可得(10-2x)(6-2x)=12,
    即x2-8x+12=0,解得x=2或x=6(舍去),
    答:裁掉的正方形的边长为2dm,底面积为12dm2.
    20、塔CD的高度为37.9米
    【解析】
    试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
    试题解析:作BE⊥CD于E.
    可得Rt△BED和矩形ACEB.
    则有CE=AB=16,AC=BE.
    在Rt△BED中,∠DBE=45°,DE=BE=AC.
    在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
    ∵16+DE=DC,
    ∴16+AC=AC,
    解得:AC=8+8=DE.
    所以塔CD的高度为(8+24)米≈37.9米,
    答:塔CD的高度为37.9米.

    21、x=15,y=1
    【解析】
    根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
    (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
    【详解】
    依题意得,

    化简得,,
    解得, .,
    检验当x=15,y=1时,,,
    ∴x=15,y=1是原方程的解,经检验,符合题意.
    答:x=15,y=1.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    22、(1)证明见解析;(2)BC=,AD=.
    【解析】
    分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
    (2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
    详解:(1)如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵BE平分∠ABC,
    ∴∠OBE=∠CBE,
    ∴∠OEB=∠CBE,
    ∴OE∥BC,
    又∵∠C=90°,
    ∴∠AEO=90°,即OE⊥AC,
    ∴AC为⊙O的切线;
    (2)∵ED⊥BE,
    ∴∠BED=∠C=90°,
    又∵∠DBE=∠EBC,
    ∴△BDE∽△BEC,
    ∴,即,
    ∴BC=;
    ∵∠AEO=∠C=90°,∠A=∠A,
    ∴△AOE∽△ABC,
    ∴,即,
    解得:AD=.
    点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
    23、(1)①3,1;②最小值为3;(1)
    【解析】
    (1)①根据点Q与点P之间的“直距”的定义计算即可;
    ②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
    (1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
    【详解】
    解:(1)①如图1中,

    观察图象可知DAO=1+1=3,DBO=1,
    故答案为3,1.
    ②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
    (ii)当点C在坐标轴上时(,),易得为3;
    (ⅲ)当点C在第二象限时(),可得;
    (ⅳ)当点C在第四象限时(),可得;
    综上所述,当时,取得最小值为3;
    (1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.

    【点睛】
    本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
    失分原因
    第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
    (1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
    (1)不能想到由相似求出GO的值
    24、0≤k≤且 k≠1.
    【解析】
    根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.
    【详解】
    解:∵关于 x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,
    ∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,
    解得:0≤k≤且 k≠1.
    ∴k 的取值范围为 0≤k≤且 k≠1.
    【点睛】
    本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于 k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.

    相关试卷

    2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案: 这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。

    2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八上期末达标检测模拟试题含答案: 这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八上期末达标检测模拟试题含答案,共7页。试卷主要包含了已知,则与的关系是等内容,欢迎下载使用。

    2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八年级第一学期期末调研试题含答案: 这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八年级第一学期期末调研试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算结果,正确的是,下列命题中,属于真命题的是,若,则的值为,已知5,则分式的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map