终身会员
搜索
    上传资料 赚现金
    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    立即下载
    加入资料篮
    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)01
    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)02
    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)03
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)

    展开
    这是一份第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共20页。

    第24章 圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    一.垂径定理的应用(共2小题)
    1.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为    cm(玻璃瓶厚度忽略不计).

    2.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)
    答:圆材直径    寸.

    二.圆心角、弧、弦的关系(共1小题)
    3.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是    .

    三.圆周角定理(共4小题)
    4.(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为,那么弦AC所对的圆周角的度数等于    .
    5.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为    .

    6.(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为   .

    7.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于   °.
    四.三角形的外接圆与外心(共3小题)
    8.(2021•襄阳)点O是△ABC的外心,若∠BOC=110°,则∠BAC为    °.
    9.(2021•随州)如图,⊙O是△ABC的外接圆,连接AO并延长交⊙O于点D,若∠C=50°,则∠BAD的度数为    .

    10.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于   .

    五.切线的性质(共3小题)
    11.(2021•荆州)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF∥OC交AB于F,过点B的切线交AC的延长线于E.若AD=4,DF=,则BE=   .

    12.(2020•鄂州)如图,半径为2cm的⊙O与边长为2cm的正方形ABCD的边AB相切于E,点F为正方形的中心,直线OE过F点.当正方形ABCD沿直线OF以每秒(2﹣)cm的速度向左运动   秒时,⊙O与正方形重叠部分的面积为(π﹣)cm2.

    13.(2020•鄂州)如图,已知直线y=﹣x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为   .

    六.三角形的内切圆与内心(共1小题)
    14.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)    .

    七.正多边形和圆(共1小题)
    15.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是    .

    八.扇形面积的计算(共5小题)
    16.(2021•荆门)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为    .

    17.(2021•宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为    平方厘米.(圆周率用π表示)

    18.(2021•十堰)如图,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C为圆心、BC长为半径画弧交AC于点F,则图中阴影部分的面积是    .

    19.(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为    .(结果不取近似值)

    20.(2020•十堰)如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π﹣1),则AC=   .

    九.圆锥的计算(共1小题)
    21.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为   .

    第24章 圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
    参考答案与试题解析
    一.垂径定理的应用(共2小题)
    1.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为  7.5 cm(玻璃瓶厚度忽略不计).

    【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,
    设球的半径为rcm,
    由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),
    由垂径定理得:AM=DM=AD=6(cm),
    在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,
    即62+(12﹣r)2=r2,
    解得:r=7.5,
    即球的半径为7.5cm,
    故答案为:7.5.

    2.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)
    答:圆材直径  26 寸.

    【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:

    ∵OC⊥AB,
    ∴AC=BC=AB,.
    则CD=1寸,AC=BC=AB=5寸.
    设圆的半径为x寸,则OC=(x﹣1)寸.
    在Rt△OAC中,由勾股定理得:
    52+(x﹣1)2=x2,
    解得:x=13.
    ∴圆材直径为2×13=26(寸).
    故答案为:26.
    二.圆心角、弧、弦的关系(共1小题)
    3.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是  90° .

    【解答】解:根据题意得:,
    解得,
    ∴β﹣α=225°﹣135°=90°,
    故答案为:90°.
    三.圆周角定理(共4小题)
    4.(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为,那么弦AC所对的圆周角的度数等于  45°或135° .
    【解答】解:如图,

    ∵OA=OC=1,AC=,
    ∴OA2+OC2=AC2,
    ∴∠AOC=90°,
    ∴∠ADC=45°,
    ∴∠AD'C=135°,
    故答案为:45°或135°.
    5.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为  120° .

    【解答】解:由圆周角定理得:∠AOC=2∠ABC,
    ∵∠ABC=60°,
    ∴∠AOC=120°,
    故答案为:120°.
    6.(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为 30° .

    【解答】解:∵∠BAC=∠BOC=×120°=60°,
    而AD是∠BAC的角平分线,
    ∴∠CAD=∠BAC=30°.
    故答案为:30°.
    7.(2020•襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 60或120 °.
    【解答】解:如图,

    ∵弦BC垂直平分半径OA,
    ∴OD:OB=1:2,
    ∴∠BOD=60°,
    ∴∠BOC=120°,
    ∴弦BC所对的圆周角等于60°或120°.
    故答案为:60或120.
    四.三角形的外接圆与外心(共3小题)
    8.(2021•襄阳)点O是△ABC的外心,若∠BOC=110°,则∠BAC为  55°或125 °.
    【解答】解:①∠BAC是锐角,如图,

    ∵∠BOC=110°,
    ∴∠BAC=55°;
    ②∠BAC是钝角,如图,
    ∵∠BAC+∠BA′C=180°,
    ∴∠BA′C=125°.
    故答案为:55°或125.
    9.(2021•随州)如图,⊙O是△ABC的外接圆,连接AO并延长交⊙O于点D,若∠C=50°,则∠BAD的度数为  40° .

    【解答】解:连接BD,如图.
    ∵AD为直径,
    ∴∠ABD=90°,
    ∵∠C与∠ADB所对的弧为,
    ∴∠ADB=∠C=50°.
    ∴∠BAD=90°﹣∠ADB=90°﹣50°=40°.
    故答案为:40°.

    10.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于 π .

    【解答】解:∵每个小方格都是边长为1的正方形,
    ∴AB=2,AC=,BC=,
    ∴AC2+BC2=AB2,
    ∴△ACB为等腰直角三角形,
    ∴∠A=∠B=45°,
    ∴连接OC,则∠COB=90°,

    ∵OB=,
    ∴的长为:=π,
    故答案为:π.
    五.切线的性质(共3小题)
    11.(2021•荆州)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF∥OC交AB于F,过点B的切线交AC的延长线于E.若AD=4,DF=,则BE=  .

    【解答】解:∵OD⊥AC,AD=4,
    ∴AD=DC=4,
    ∵DF∥OC,DF=,
    ∴OC=2DF=5,
    在Rt△COD中,OD===3,
    ∵BE是⊙O的切线,
    ∴AB⊥BE,
    ∵OD⊥AD,
    ∴∠ADO=∠ABE,
    ∵∠OAD=∠EAB,
    ∴△AOD∽△AEB,
    ∴=,即=,
    解得:BE=,
    故答案为:.
    12.(2020•鄂州)如图,半径为2cm的⊙O与边长为2cm的正方形ABCD的边AB相切于E,点F为正方形的中心,直线OE过F点.当正方形ABCD沿直线OF以每秒(2﹣)cm的速度向左运动 1或(11+6) 秒时,⊙O与正方形重叠部分的面积为(π﹣)cm2.

    【解答】解:如图1中,当点A,B落在⊙O上时,由题意,△AOB是等边三角形,⊙O与正方形重叠部分的面积为(π﹣)cm2

    此时,运动时间t=(2﹣)÷(2﹣)=1(秒)
    如图2中,当点C,D落在⊙O上时,由题意,△OCD是等边三角形,⊙O与正方形重叠部分的面积为(π﹣)cm2

    此时,运动时间t=[4+2﹣(2﹣)]÷(2﹣)=(11+6)(秒),
    综上所述,满足条件的t的值为1秒或(11+6)秒.
    故答案为1或(11+6).
    13.(2020•鄂州)如图,已知直线y=﹣x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为 2 .

    【解答】解:如图,

    在直线y=﹣x+4上,x=0时,y=4,
    当y=0时,x=,
    ∴OB=4,OA=,
    ∴tan∠OBA==,
    ∴∠OBA=30°,
    由PQ切⊙O于Q点可知:OQ⊥PQ,
    ∴PQ=,
    由于OQ=1,
    因此当OP最小时PQ长取最小值,此时OP⊥AB,
    ∴OP=OB=2,
    此时PQ==,
    BP==2,
    ∴OQ=OP,即∠OPQ=30°,
    若使点P到直线a的距离最大,
    则最大值为PM,且M位于x轴下方,
    过点P作PE⊥y轴于点E,
    ∴EP=BP=,
    ∴BE==3,
    ∴OE=4﹣3=1,
    ∵OE=OP,
    ∴∠OPE=30°,
    ∴∠EPM=30°+30°=60°,
    即∠EMP=30°,
    ∴PM=2EP=2.
    故答案为:2.
    六.三角形的内切圆与内心(共1小题)
    14.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π)  5﹣π .

    【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,
    ∵∠C=90°,OD=OE=OF,
    ∴四边形CEOD是正方形,
    ∵AC=4,BC=3,∠C=90°,
    ∴AB===5,
    ∵S△ABC=S△AOC+S△COB+S△BOA,
    ∴=,
    解得OD=OE=OF=1,
    ∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,
    故答案为:5﹣π.

    七.正多边形和圆(共1小题)
    15.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是  18° .

    【解答】解:由题意知点A、B、C、D为正五边形任意四个顶点,且O为正五边形中心,
    ∴∠AOB=∠BOC=∠COD==72°,
    ∴∠AOD=360°﹣3∠AOB=144°,
    又∵OA=OD,
    ∴∠ADO===18°,
    故答案为:18°.
    八.扇形面积的计算(共5小题)
    16.(2021•荆门)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为  2﹣ .

    【解答】解:连接PB、PC,作PF⊥BC于F,
    ∵PB=PC=BC,
    ∴△PBC为等边三角形,
    ∴∠PBC=60°,∠PBA=30°,
    ∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,
    则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2
    =[﹣(﹣×2×)]×2=2﹣,
    故答案为:2﹣.

    17.(2021•宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为  (2π﹣2) 平方厘米.(圆周率用π表示)

    【解答】解:过A作AD⊥BC于D,
    ∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,
    ∵AD⊥BC,
    ∴BD=CD=1厘米,AD=BD=厘米,
    ∴△ABC的面积为BC•AD=(厘米2),
    S扇形BAC==π(厘米2),
    ∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2,
    故答案为:(2π﹣2).

    18.(2021•十堰)如图,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C为圆心、BC长为半径画弧交AC于点F,则图中阴影部分的面积是  3π﹣6 .

    【解答】解:连接BE,
    ∵AB为直径,
    ∴BE⊥AC,
    ∵AB=BC=4,∠ABC=90°,
    ∴BE=AE=CE,
    ∴S弓形AE=S弓形BE,
    ∴图中阴影部分的面积=S半圆﹣(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)
    =π×22﹣(﹣)﹣(﹣)
    =3π﹣6,
    故答案为3π﹣6.

    19.(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为  2﹣π .(结果不取近似值)

    【解答】解:∵AB是直径,
    ∴∠ACB=90°,
    ∵∠ABC=60°,
    ∴∠CAB=30°,
    ∴BC=,AC=,
    ∴,
    ∵∠CAB=30°,
    ∴扇形ACD的面积=,
    ∴阴影部分的面积为.
    故答案为:.
    20.(2020•十堰)如图,圆心角为90°的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(π﹣1),则AC= 2 .

    【解答】解:将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示:
    由已知得:三角形ABC为等腰直角三角形,S1+S2=π﹣1,
    ∵BC为直径,
    ∴∠CDB=90°,即CD⊥AB,
    故CD=DB=DA,
    ∴D点为中点,由对称性可知与弦CD围成的面积与S3相等.
    设AC=BC=x,
    则S扇形ACB﹣S3﹣S4=S1+S2,
    其中,

    故:,
    所以:x1=2,x2=﹣2(舍去)
    故答案为:2.

    九.圆锥的计算(共1小题)
    21.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为  .
    【解答】解:设圆锥底面的半径为r,
    扇形的弧长为:=π,
    ∵圆锥的底面周长等于它的侧面展开图的弧长,
    ∴根据题意得2πr=π,
    解得:r=.
    故答案为:.
    相关试卷

    第26反比例函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第26反比例函数(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共31页。

    第25章概率初步(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第25章概率初步(选择、填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共17页。

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第24章+圆(填空题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map