所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
展开
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共49页。
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
一.选择题(共22小题)
1.(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为( )
A.16π B.24π C.48π D.96π
2.(2022•河池)如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC=25°,OC的延长线交PA于点P,则∠P的度数是( )
A.25° B.35° C.40° D.50°
3.(2022•贵港)下列命题为真命题的是( )
A.=a
B.同位角相等
C.三角形的内心到三边的距离相等
D.正多边形都是中心对称图形
4.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40° B.45° C.50° D.55°
5.(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是( )
A.60° B.62° C.72° D.73°
6.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.π B.π C.π D.π
7.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A.2cm B.3cm C.4cm D.5cm
8.(2021•梧州)在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.3+4 B.12 C.6+3 D.6
9.(2021•梧州)若扇形的半径为3,圆心角为60°,则此扇形的弧长是( )
A.π B.π C.π D.2π
10.(2021•桂林)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,BC,则∠C的度数是( )
A.60° B.90° C.120° D.150°
11.(2021•贵港)如图,点A,B,C,D均在⊙O上,直径AB=4,点C是的中点,点D关于AB对称的点为E,若∠DCE=100°,则弦CE的长是( )
A.2 B.2 C. D.1
12.(2021•贺州)如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为( )
A. B. C. D.1
13.(2021•贺州)如图,在边长为2的等边△ABC中,D是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC分别交于E,F两点,则图中阴影部分的面积为( )
A. B. C. D.
14.(2021•柳州)如图所示,点A,B,C对应的刻度分别为1,3,5,将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A′,则此时线段CA扫过的图形的面积为( )
A.4 B.6 C. D.
15.(2021•柳州)往水平放置的半径为13cm的圆柱形容器内装入一些水以后,截面图如图所示,若水面宽度AB=24cm,则水的最大深度为( )
A.5cm B.8cm C.10cm D.12cm
16.(2020•梧州)如图,在矩形ABCD中,AB=6,AD=8,点O在对角线BD上,以OB为半径作⊙O交BC于点E,连接DE,若DE是⊙O的切线,此时⊙O的半径为( )
A.2 B. C. D.
17.(2020•贺州)如图,四边形ABCD内接于⊙O,∠AOC=∠ABC,AC=2,则的长度是( )
A. B. C.2π D.
18.(2020•梧州)如图,⊙O的直径CD过弦EF的中点G,连接CF,∠C=30°,CF=2,则OG的长是( )
A.1 B. C.2 D.2
19.(2020•广西)如图,已知四边形ABCD为⊙O的内接四边形,BD平分∠ABC,DH⊥AB于点H,DH=,∠ABC=120°,则AB+BC的值为( )
A. B. C.2 D.
20.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为( )
A.100° B.110° C.120° D.130°
21.(2020•柳州)如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为( )
A.35° B.40° C.55° D.70°
22.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是( )
A.60° B.65° C.70° D.75°
二.填空题(共13小题)
23.(2022•柳州)如图,点A,B,C在⊙O上,∠AOB=60°,则∠ACB的度数是 °.
24.(2022•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 .
25.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为 .
26.(2022•玉林)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 .
27.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是 .
28.(2021•河池)如图,圆锥的底面半径为2,母线长为6,则这个圆锥的侧面展开图的圆心角是 .
29.(2021•河池)如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则点B的坐标是 .
30.(2021•贵港)如图,圆锥的高是4,它的侧面展开图是圆心角为120°的扇形,则圆锥的侧面积是 (结果保留π).
31.(2021•广西)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分),且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是 .
32.(2020•梧州)如图,已知⊙O是正六边形ABCDEF的外接圆,的长是,则阴影部分的面积是 .
33.(2020•百色)如图,正方形ABCD的边长为2.以点A为圆心,AB为半径画,则图中阴影部分的面积是 .
34.(2020•贵港)如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为 .
35.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2= °.
三.解答题(共7小题)
36.(2021•贺州)如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.
(1)求证:AE平分∠BAC;
(2)若∠B=30°,求的值.
37.(2021•玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.
(1)求证:DF是⊙O的切线;
(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.
38.(2020•贺州)如图,AB是⊙O的直径,D是AB延长线上的一点,点C在⊙O上,BC=BD,AE⊥CD交DC的延长线于点E,AC平分∠BAE.
(1)求证:CD是⊙O的切线;
(2)若CD=6,求⊙O的直径.
39.(2020•玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.
(1)求证:EF是⊙O的切线;
(2)若D是OA的中点,AB=4,求CF的长.
40.(2020•广西)如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点E,点D为AC的中点,连接DE.
(1)求证:DE是⊙O的切线.
(2)若CE=1,OA=,求∠ACB的度数.
41.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.
(1)求证:AB是⊙O的切线;
(2)若AB=2,AD=3,求直径AE的长.
42.(2020•河池)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)CG∥OD,交AB于点G,求CG的长.
第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
参考答案与试题解析
一.选择题(共22小题)
1.(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为( )
A.16π B.24π C.48π D.96π
【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,
所以扇形的面积为×8π×12=48π,
即圆锥的侧面积为48π,
故选:C.
2.(2022•河池)如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC=25°,OC的延长线交PA于点P,则∠P的度数是( )
A.25° B.35° C.40° D.50°
【解答】解:∵∠ABC=25°,
∴∠AOP=2∠ABC=50°,
∵PA是⊙O的切线,
∴PA⊥AB,
∴∠PAO=90°,
∴∠P=90°﹣∠AOP=90°﹣50°=40°,
故选:C.
3.(2022•贵港)下列命题为真命题的是( )
A.=a
B.同位角相等
C.三角形的内心到三边的距离相等
D.正多边形都是中心对称图形
【解答】解:A.当a<0时,原式=﹣a,故原命题为假命题,此选项不符合题意;
B.当两直线平行时,同位角才相等,故原命题为假命题,此选项不符合题意;
C.三角形的内心为三角形内切圆的圆心,故到三边的距离相等,故原命题为真命题,此选项符合题意;
D.三角形不是中心对称图形,故原命题为假命题,此选项不符合题意,
故选:C.
4.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40° B.45° C.50° D.55°
【解答】解:∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠ACB+∠CAB=90°,
∵∠ACB=40°,
∴∠CAB=90°﹣40°=50°,
由圆周角定理得:∠BPC=∠CAB=50°,
故选:C.
5.(2022•梧州)如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是( )
A.60° B.62° C.72° D.73°
【解答】解:∵AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵四边形ADBC是圆内接四边形,
∴∠D+∠C=180°,
∴∠D=180°﹣∠C=108°,
∴∠BAD+∠ABD=180°﹣∠D=72°,
故选:C.
6.(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.π B.π C.π D.π
【解答】解:∵CA=CB,CD⊥AB,
∴AD=DB=AB′.
∴∠AB′D=30°,
∴α=30°,
∵AC=4,
∴AD=AC•cos30°=4×=2,
∴,
∴的长度l==π.
故选:B.
7.(2022•贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A.2cm B.3cm C.4cm D.5cm
【解答】解:如图:
∵圆锥的圆锥体底面半径是6cm,高是6cm,
∴△ABC是等腰直角三角形,
∴△CDE也是等腰直角三角形,即CD=DE,
由已知可得:液体的体积为π×32×7=63π(cm3),圆锥的体积为π×62×6=72π(cm3),
∴计时结束后,圆锥中没有液体的部分体积为72π﹣63π=9π(cm3),
设计时结束后,“沙漏”中液体的高度AD为xcm,则CD=DE=(6﹣x)cm,
∴π•(6﹣x)2•(6﹣x)=9π,
∴(6﹣x)3=27,
解得x=3,
∴计时结束后,“沙漏”中液体的高度为3cm,
故选:B.
8.(2021•梧州)在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.3+4 B.12 C.6+3 D.6
【解答】解:如图,以AB为边向右作等边△ABD,以D为圆心,DA为半径作⊙D交x的正半轴于C,连接CA,CB,此时∠ACB=∠ADB=30°满足条件.
过点D作DJ⊥AB于J,DK⊥OC于K,则四边形OJDK是矩形,
∵A(0,1),B(0,﹣5),
∴AB=6,
∵DA=DB=AB=6,DJ⊥AB,
∴AJ=JB=3,
∴DJ=OK===3,
∴OJ=DK=2,
在Rt△DCK中,CK===4,
∴OC=OK+KC=3+4,
∴点C的横坐标为3+4,
故选:A.
9.(2021•梧州)若扇形的半径为3,圆心角为60°,则此扇形的弧长是( )
A.π B.π C.π D.2π
【解答】解:∵一个扇形的半径长为3,且圆心角为60°,
∴此扇形的弧长为=π.
故选:B.
10.(2021•桂林)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,BC,则∠C的度数是( )
A.60° B.90° C.120° D.150°
【解答】解:∵AB为⊙O的直径,
∴∠C=90°,
故选:B.
11.(2021•贵港)如图,点A,B,C,D均在⊙O上,直径AB=4,点C是的中点,点D关于AB对称的点为E,若∠DCE=100°,则弦CE的长是( )
A.2 B.2 C. D.1
【解答】解:连接AD、AE、OD、OC、OE,过点O作OH⊥CE于点H,
∵∠DCE=100°,
∴∠DAE=180°﹣∠DCE=80°,
∵点D关于AB对称的点为E,
∴∠BAD=∠BAE=40°,
∴∠BOD=∠BOE=80°,
∵点C是的中点,
∴∠BOC=∠COD=40°,
∴∠COE=∠BOC+∠BOE=120°,
∵OE=OC,OH⊥CE,
∴EH=CH,∠OEC=∠OCE=30°,
∵直径AB=4,
∴OE=OC=2,
∴EH=CH=,
∴CE=2.
故选:A.
12.(2021•贺州)如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为( )
A. B. C. D.1
【解答】解:连接OD,过点O作OF⊥BC于F,
则BF=EF,
∵AC是⊙O的切线,
∴OD⊥AC,
∵∠C=90°,OF⊥BC,
∴OD∥BC,四边形ODCF为矩形,
∴△AOD∽△ABC,CF=OD=2,
∴=,即=,
解得:BC=,
∴BF=BC﹣CF=﹣2=,
∴BE=2BF=,
∴CE=BC﹣BE=﹣=,
故选:B.
13.(2021•贺州)如图,在边长为2的等边△ABC中,D是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC分别交于E,F两点,则图中阴影部分的面积为( )
A. B. C. D.
【解答】解:连接AD,如图所示:
∵D是BC边上的中点,
∴AD⊥BC,
∵△ABC是等边三角形,
∴∠B=60°,BC=AB=2,
∴AD=AB•sin60°=2×=,
∴阴影部分的面积==.
故选:C.
14.(2021•柳州)如图所示,点A,B,C对应的刻度分别为1,3,5,将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A′,则此时线段CA扫过的图形的面积为( )
A.4 B.6 C. D.
【解答】解:由题意,知AC=4,BC=4﹣2=2,∠A′BC=90°.
由旋转的性质,得A′C=AC=4.
在Rt△A′BC中,cos∠ACA′==.
∴∠ACA′=60°.
∴扇形ACA′的面积为=π.
即线段CA扫过的图形的面积为π.
故选:D.
15.(2021•柳州)往水平放置的半径为13cm的圆柱形容器内装入一些水以后,截面图如图所示,若水面宽度AB=24cm,则水的最大深度为( )
A.5cm B.8cm C.10cm D.12cm
【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=24cm,
∴BD=AB=12(cm),
∵OB=OC=13cm,
在Rt△OBD中,OD===5(cm),
∴CD=OC﹣OD=13﹣5=8(cm),
即水的最大深度为8cm,
故选:B.
16.(2020•梧州)如图,在矩形ABCD中,AB=6,AD=8,点O在对角线BD上,以OB为半径作⊙O交BC于点E,连接DE,若DE是⊙O的切线,此时⊙O的半径为( )
A.2 B. C. D.
【解答】解:如图,过点O作OF⊥BE于点F,
∵四边形ABCD是矩形,
∴∠A=∠C=90°,BC=AD=8,DC=AB=6,
在Rt△ADB中,∠C=90°,
∴BD==10,
∴tan∠DBC===,
设OF=3x,BF=4x,
则BO=5x,
∵OB=OE,
∴BF=EF=4x,
∴CE=CB﹣BE=8﹣8x,
∵DE是⊙O的切线,
∴OE⊥DE,
∴∠OEF+∠DEC=90°,
∵∠DEC+∠EDC=90°,
∴∠OEF=∠EDC,
∵∠OFE=∠DCE,
∴△OEF∽△EDC,
∴=,
∴=,
解得x=0(舍去),x=,
∴OB=5x=.
故选:C.
17.(2020•贺州)如图,四边形ABCD内接于⊙O,∠AOC=∠ABC,AC=2,则的长度是( )
A. B. C.2π D.
【解答】解:∵对的圆周角是∠D,对的圆心角是∠AOC,
∴∠D=∠AOC,
∵∠AOC=∠ABC,
∴∠D=ABC,
∵四边形ABCD是⊙O的内接四边形,
∴∠ABC+∠D=180°,
∴ABC+∠ABC=180°,
解得:∠ABC=120°,
∴∠AOC=∠ABC=120°,
过O作OE⊥AC于E,则∠OEA=90°,
∵OE过O,AC=2,
∴AE=CE=AC=,
∴OA=OC,OE⊥AC,∠AOC=120°,
∴∠OAE=30°,
∴OE=AE×tan30°==1,
∴OA=2OE=2,
∴的长度是=,
故选:B.
18.(2020•梧州)如图,⊙O的直径CD过弦EF的中点G,连接CF,∠C=30°,CF=2,则OG的长是( )
A.1 B. C.2 D.2
【解答】解:连接OF,
∵⊙O的直径CD过弦EF的中点G,
∴CD⊥EF,
∴∠CGF=90°,
∵∠C=30°,CF=2,
∴GF=CF=,
由勾股定理得:CG===3,
设OC=OF=R,
在Rt△OGF中,由勾股定理得:OG2+GF2=OF2,
即(3﹣R)2+()2=R2,
解得:R=2,
即OC=2,
∴OG=CG﹣OC=3﹣2=1,
故选:A.
19.(2020•广西)如图,已知四边形ABCD为⊙O的内接四边形,BD平分∠ABC,DH⊥AB于点H,DH=,∠ABC=120°,则AB+BC的值为( )
A. B. C.2 D.
【解答】解:延长BA到E,使AE=BC,连接DE,如图,
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC=×120°=60°,
∵∠DAC=∠DBC=60°,∠DCA=∠DBA=60°,
∴△DAC为等边三角形,
∴DA=DC,
在△ADE和△BCD中,
,
∴△ADE≌△BCD(SAS),
∴∠E=∠DBC=60°,
而∠DBA=60°,
∴△DBE为等边三角形,
∵DH⊥AB,
∴BH=EH,
在Rt△BDH中,BH=DH=×=1,
∴BE=2BH=2,
∴AB+BC=2.
故选:C.
20.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为( )
A.100° B.110° C.120° D.130°
【解答】解:在优弧AB上任意找一点D,连接AD,BD.
∵∠D=180°﹣∠ACB=50°,
∴∠AOB=2∠D=100°,
故选:A.
21.(2020•柳州)如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为( )
A.35° B.40° C.55° D.70°
【解答】解:∵如图,∠BOC=70°,
∴∠A=∠BOC=35°.
故选:A.
22.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是( )
A.60° B.65° C.70° D.75°
【解答】解:∵AC与⊙O相切于点A,
∴AC⊥OA,
∴∠OAC=90°,
∵OA=OB,
∴∠OAB=∠OBA.
∵∠O=130°,
∴∠OAB==25°,
∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.
故选:B.
二.填空题(共13小题)
23.(2022•柳州)如图,点A,B,C在⊙O上,∠AOB=60°,则∠ACB的度数是 30 °.
【解答】解:∵∠AOB=60°,
∴∠ACB=∠AOB=30°,
故答案为:30.
24.(2022•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 5﹣π .
【解答】解:过点D作DF⊥AB于点F,
∵AD=AB,∠BAD=45°,AB=3,
∴AD=×3=2,
∴DF=ADsin45°=2×=2,
∵AE=AD=2,
∴EB=AB−AE=,
∴S阴影=S▱ABCD−S扇形ADE−S△EBC
=3×2﹣﹣××2
=5﹣π,
故答案为:5﹣π.
25.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为 .
【解答】解:连接OA,
由题意可知,直线MN垂直平分线段OA,
∴EA=EO,
∵OA=OE,
∴△AOE为等边三角形,
∴∠AOE=60°,
∵四边形ABCD是⊙O的内接正四边形,
∴∠AOB=90°,
∴∠BOE=30°,
∵S弓形AOE=S扇形AOE﹣S△AOE,
∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB
=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB
=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB
=S扇形BOE+S△AOE﹣S△AOB
=+﹣
=.
故答案为:.
26.(2022•玉林)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 △ABD,△ACD,△BCD .
【解答】解:由图可知:
OA=,
OB=,
OC=,
OD=,
OE=,
∴OA=OB=OC=OD≠OE,
∴△ABD,△ACD,△BCD的外心都是点O,
故答案为:△ABD,△ACD,△BCD.
27.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是 1 .
【解答】解:由题意的长=CD+BC=1+1=2,
S扇形ABD=••AB=×2×1=1,
故答案为:1.
28.(2021•河池)如图,圆锥的底面半径为2,母线长为6,则这个圆锥的侧面展开图的圆心角是 120° .
【解答】解:圆锥侧面展开图的弧长是:2π×2=4π,
设圆心角的度数是n度.则=4π,
解得:n=120.
故答案为:120°.
29.(2021•河池)如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则点B的坐标是 (4,3﹣) .
【解答】解:设以AB为直径的圆与x轴相切于点D,连接MD,BC,
则MD⊥x轴,
∵点M的坐标为(2,3),
∴CE=BE=2,BM=DM=3,
∵AB为圆的直径,
∴AC⊥BC,
∴BC∥x轴,
∴MD⊥BC,
∴BC=2CE=4,CE=BE=2,
在Rt△BME中,由勾股定理得:ME===,
∴DE=MD﹣ME=3﹣,
∴点B的坐标为(4,3﹣),
故答案为:(4,3﹣).
30.(2021•贵港)如图,圆锥的高是4,它的侧面展开图是圆心角为120°的扇形,则圆锥的侧面积是 6π (结果保留π).
【解答】解:设圆锥的底面半径为r,母线长为l,
根据题意得:2πr=,
解得:l=3r,
∵高为4,
∴r2+42=(3r)2,
解得:r=,
∴母线长为3,
∴圆锥的侧面积为πrl=π××3=6π,
故答案为:6π.
31.(2021•广西)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分),且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是 .
【解答】解:连接AC、AE,如图,
∵四边形ABCD为菱形,
∴∠BAC=∠BAD=×120°=60°,AB=BC,
∴△ABC为等边三角形,
∵圆弧与BC相切于E,
∴AE⊥BC,
∴BE=CE=1,
∴AE===,
设圆锥的底面圆半径为r,
根据题意得2πr=,解得r=,
即圆锥的底面圆半径为.
故答案为.
32.(2020•梧州)如图,已知⊙O是正六边形ABCDEF的外接圆,的长是,则阴影部分的面积是 ﹣ .
【解答】解:∵⊙O是正六边形ABCDEF的外接圆,
∴∠AOB==60°,
∵的长是π,
∴=π,
∴OA=2,
∴S扇形OAB==,
过O作OH⊥AB于H,
∵OA=OB,
∴△OAB是等边三角形,
∴AB=OA=2,∠AOH=∠AOB=30°,
∴AH=AB=1,
∴OH==,
∴S△OAB=AB•OH=,
∴S阴影=S扇形OAB﹣S△OAB=﹣,
故答案为:﹣.
33.(2020•百色)如图,正方形ABCD的边长为2.以点A为圆心,AB为半径画,则图中阴影部分的面积是 4﹣π .
【解答】解:∵四边形ABCD是正方形,边长为2,
∴AD=AB=2,∠A=90°,
∴阴影部分的面积S=S正方形ABCD﹣S扇形DAB=2×2﹣=4﹣π,
故答案为:4﹣π.
34.(2020•贵港)如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为 1+﹣π .
【解答】解:连接OC,作CM⊥OB于M,
∵∠AOB=90°,OA=OB=2,
∴∠ABO=∠OAB=45°,AB=2,
∵∠ABC=30°,AD⊥BC于点D,
∴AD==,BD=AB=,
∵∠ABO=45°,∠ABC=30°,
∴∠OBC=75°,
∵OB=OC,
∴∠OCB=∠OBC=75°,
∴∠BOC=30°,
∴∠AOC=60°,CM=OC==1,
∴S阴影=S△ABD+S△AOB﹣S扇形OAB+(S扇形OBC﹣S△BOC)
=S△ABD+S△AOB﹣S扇形OAC﹣S△BOC
=+×﹣﹣
=1+﹣π.
故答案为1+﹣π.
35.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2= 35 °.
【解答】解:如图,连接AD.
∵AB是直径,
∴∠ADB=90°,
∵∠1=∠ADE,
∴∠1+∠2=90°,
∵∠1=55°,
∴∠2=35°,
故答案为35.
三.解答题(共7小题)
36.(2021•贺州)如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.
(1)求证:AE平分∠BAC;
(2)若∠B=30°,求的值.
【解答】(1)证明:连接OE,
∵BC是⊙O的切线,
∴OE⊥BC,即∠OEB=90°,
∵∠C=90°,
∴OE∥AC,
∴∠OEA=∠EAC,
∵OE=OA,
∴∠OEA=∠OAE,
∴∠OAE=∠EAC,即AE平分∠BAC;
(2)解:∵AD为⊙O的直径,
∴∠AED=90°,
∵∠OAE=∠EAC,∠C=90°,
∴△DAE∽△EAC,
∴=,
∵∠C=90°,∠B=30°,
∴∠BAC=90°﹣30°=60°,
∴∠DAE=∠BAC=30°,
∵cos∠DAE=,cos30°=,
∴==.
37.(2021•玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.
(1)求证:DF是⊙O的切线;
(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.
【解答】(1)证明:连结OD,如图所示:
∵∠DAO=60°,OD=OA,
∴△DOA是等边三角形,
∴∠ODA=∠C=60°,
∴OD∥BC,
又∵∠DFC=90°,
∴∠ODF=90°,
∴OD⊥DF,
即DF是⊙O的切线;
(2)设半径为r,等边△ABC的边长为a,
由(1)可知:AD=r,则CD=a﹣r,BE=a﹣2r
在Rt△CFD中,∠C=60°,CD=a﹣r,
∴CF=,
∴BF=a﹣,
又∵EF是⊙O的切线,
∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,
∴BF=2BE,
∴a﹣(a﹣r)=2(a﹣2r),
解得:a=3r,
即r=,
∴⊙O的半径r与等边△ABC的边长a之间的数量关系为:r=.
38.(2020•贺州)如图,AB是⊙O的直径,D是AB延长线上的一点,点C在⊙O上,BC=BD,AE⊥CD交DC的延长线于点E,AC平分∠BAE.
(1)求证:CD是⊙O的切线;
(2)若CD=6,求⊙O的直径.
【解答】(1)证明:连接OC,如图,
∵AC平分∠EAB,
∴∠OAC=∠EAC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠EAC=∠ACO,
∴OC∥AE,
∵AE⊥DC,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:∵BC=BD,
∴∠BCD=∠BDC,
∵AB是⊙O的直径,
∴∠ACB=∠ACO+∠OCB=90°,
由(1)知OC⊥CD,
∴∠OCD=∠BCD+∠OCB=90°,
∴∠OAC=∠OCA=∠BCD=∠BDC,
∵OC=OB,
∴∠OBC=∠OCB,
而∠OBC=∠BCD+∠D=2∠BCD,
∴∠OCB=2∠BCD,
而∠OCD=∠BCD+∠OCB=3∠BCD=90°,
∴∠OAC=∠OCA=∠BCD=∠D=30°,
设OC=x,则OD=2x,
由勾股定理得4x2﹣x2=62,
解得,
所以.
39.(2020•玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.
(1)求证:EF是⊙O的切线;
(2)若D是OA的中点,AB=4,求CF的长.
【解答】(1)证明:连接OF,如图1所示:
∵CD⊥AB,
∴∠DBC+∠C=90°,
∵OB=OF,
∴∠DBC=∠OFB,
∵EF=EC,
∴∠C=∠EFC,
∴∠OFB+∠EFC=90°,
∴∠OFE=180°﹣90°=90°,
∴OF⊥EF,
∵OF为⊙O的半径,
∴EF是⊙O的切线;
(2)解:连接AF,如图2所示:
∵AB是⊙O的直径,
∴∠AFB=90°,
∵D是OA的中点,
∴OD=DA=OA=AB=×4=1,
∴BD=3OD=3,
∵CD⊥AB,CD=AB=4,
∴∠CDB=90°,
由勾股定理得:BC===5,
∵∠AFB=∠CDB=90°,∠FBA=∠DBC,
∴△FBA∽△DBC,
∴=,
∴BF===,
∴CF=BC﹣BF=5﹣=.
40.(2020•广西)如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点E,点D为AC的中点,连接DE.
(1)求证:DE是⊙O的切线.
(2)若CE=1,OA=,求∠ACB的度数.
【解答】(1)证明:如图,连接OD,OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵点D是AC的中点,O是AB的中点,
∴OD∥BC,
∴∠OBE=∠AOD,∠OEB=∠DOE,
∴∠AOD=∠EOD,
在△AOD和△EOD中,
,
∴△AOD≌△EOD(SAS),
∴∠OED=∠OAD=90°,
∴OE⊥DE,
∴DE是⊙O的切线;
(2)解:如图,连接AE,
∵AB为⊙O直径,
∴∠AEB=∠AEC=90°,
∵点D为AC的中点,
∴设AD=CD=x,
∴AE==,
∵∠C+∠CAE=90°,∠BAE+∠CAE=90°,
∴∠C=∠BAE,
∴△AEC∽△BEA,
∴=,
∴=,
∴x=,
两边平方,得
(4x2﹣1)x2=3,
整理,得4x4﹣x2﹣3=0,
∴(x2﹣1)(4x2+3)=0,
∴(x2﹣1)=0或(4x2+3)=0,
解得,x=±1(负值舍去),(4x2+3)=0无解,
∴x=1,
∴AC=2x=2,
∴cos∠C==,
∴∠C=60°.
答:∠ACB的度数为60°.
41.(2020•贵港)如图,在△ABC中,AB=AC,点D在BC边上,且AD=BD,⊙O是△ACD的外接圆,AE是⊙O的直径.
(1)求证:AB是⊙O的切线;
(2)若AB=2,AD=3,求直径AE的长.
【解答】(1)证明:连接DE,如图1,
∵AB=AC,AD=BD,
∴∠B=∠BAD,∠B=∠C,
∴∠C=∠E,
∴∠E=∠BAD,
∵AE是⊙O的直径,
∴∠ADE=90°,
∴∠E+∠DAE=90°,
∴∠BAD+∠DAE=90°,
即∠BAE=90°,
∴AE⊥AB,
∴直线AB是⊙O的切线;
(2)解:如图2,作AH⊥BC,垂足为点H,
∵AB=AC,
∴BH=CH,
∵∠B=∠C=∠BAD,
∴△ABC∽△DBA,
∴,
即AB2=BD•BC,
又AB=2,BD=AD=3,
∴BC=8,
在Rt△ABH中,BH=CH=4,
∴AH===2,
∵∠E=∠B,∠ADE=∠AHB,
∴△AED∽△ABH,
∴,
∴=3.
42.(2020•河池)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)CG∥OD,交AB于点G,求CG的长.
【解答】证明:(1)连接OE,交BD于H,
∵点E是的中点,OE是半径,
∴OE⊥BD,BH=DH,
∵EF∥BC,
∴OE⊥EF,
又∵OE是半径,
∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,AB=6,OC⊥AB,
∴OB=3,
∴BC===,
∵S△OBC=×OB×OC=×BC×OH,
∴OH==,
∵cos∠OBC=,
∴=,
∴BH=,
∴BD=2BH=,
∵CG∥OD,
∴,
∴=,
∴CG=.
相关试卷
这是一份第24章圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共36页。
这是一份第24章+圆-【人教版-中考真题】九年级数学上学期期末复习培优练习(内蒙古),共26页。
这是一份第27章相似-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共22页。