|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省茂名地区达标名校2022年中考数学猜题卷含解析
    立即下载
    加入资料篮
    广东省茂名地区达标名校2022年中考数学猜题卷含解析01
    广东省茂名地区达标名校2022年中考数学猜题卷含解析02
    广东省茂名地区达标名校2022年中考数学猜题卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省茂名地区达标名校2022年中考数学猜题卷含解析

    展开
    这是一份广东省茂名地区达标名校2022年中考数学猜题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,直线y=3x+1不经过的象限是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    2.实数的相反数是( )
    A. B. C. D.
    3.如图所示,,结论:①;②;③;④,其中正确的是有( )

    A.1个 B.2个 C.3个 D.4个
    4.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )

    A.10 B.9 C.8 D.6
    5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=(  )

    A.110° B.120° C.125° D.135°
    6.直线y=3x+1不经过的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7.下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A.等边三角形 B.菱形 C.平行四边形 D.正五边形
    8.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是(  )

    A.1 B. C. D.
    9.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为(  )

    A. B. C.10 D.
    10.一元二次方程x2-2x=0的解是( )
    A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.

    12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________

    13.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.

    14.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.

    15.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)

    16.一元二次方程x﹣1=x2﹣1的根是_____.
    三、解答题(共8题,共72分)
    17.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
    18.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

    每台甲型收割机的租金
    每台乙型收割机的租金
    A地区
    1800
    1600
    B地区
    1600
    1200
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
    19.(8分)如图,抛物线经过点A(﹣2,0),点B(0,4).
    (1)求这条抛物线的表达式;
    (2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
    (3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.

    20.(8分)解方程组
    21.(8分)如图,在△ABC中,AB=AC,∠ABC=72°.

    (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
    (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
    22.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:
    (1)请用t分别表示A、B的路程sA、sB;
    (2)在A出发后几小时,两人相距15km?

    23.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.

    24.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    2、D
    【解析】
    根据相反数的定义求解即可.
    【详解】
    的相反数是-,
    故选D.
    【点睛】
    本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
    3、C
    【解析】
    根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
    【详解】
    解:如图:

    在△AEB和△AFC中,有

    ∴△AEB≌△AFC;(AAS)
    ∴∠FAM=∠EAN,
    ∴∠EAN-∠MAN=∠FAM-∠MAN,
    即∠EAM=∠FAN;(故③正确)
    又∵∠E=∠F=90°,AE=AF,
    ∴△EAM≌△FAN;(ASA)
    ∴EM=FN;(故①正确)
    由△AEB≌△AFC知:∠B=∠C,AC=AB;
    又∵∠CAB=∠BAC,
    ∴△ACN≌△ABM;(故④正确)
    由于条件不足,无法证得②CD=DN;
    故正确的结论有:①③④;
    故选C.
    【点睛】
    此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
    4、A
    【解析】
    过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
    解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.

    设OA=a,BF=b,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a, a).
    ∵点A在反比例函数y=的图象上,
    ∴a×a=a2=12,
    解得:a=5,或a=﹣5(舍去).
    ∴AM=8,OM=1.
    ∵四边形OACB是菱形,
    ∴OA=OB=10,BC∥OA,
    ∴∠FBN=∠AOB.
    在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
    ∴FN=BF•sin∠FBN=b,BN==b,
    ∴点F的坐标为(10+b,b).
    ∵点F在反比例函数y=的图象上,
    ∴(10+b)×b=12,
    S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
    故选A.
    “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    5、D
    【解析】
    如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
    ∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
    ∴∠ABE+∠BED+∠CDE=360°.
    又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
    ∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
    ∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
    故选D.

    【点睛】
    本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
    6、D
    【解析】
    利用两点法可画出函数图象,则可求得答案.
    【详解】
    在y=3x+1中,令y=0可得x=-,令x=0可得y=1,
    ∴直线与x轴交于点(-,0),与y轴交于点(0,1),
    其函数图象如图所示,

    ∴函数图象不过第四象限,
    故选:D.
    【点睛】
    本题主要考查一次函数的性质,正确画出函数图象是解题的关键.
    7、B
    【解析】
    在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.
    【详解】
    解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;
    B、菱形是轴对称图形,也是中心对称图形,故此选项正确;
    C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.
    8、C
    【解析】
    由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);
    ∵CE∥AB,
    ∴△ECF∽△ADF,
    得,
    即DF=2CF,所以CF:CD=1:3,
    故选C.

    【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.
    9、D
    【解析】
    如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.
    【详解】
    如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,

    则∠1=∠2,
    ∵=2,
    ∴△APD∽△ABP′,
    ∴BP′=2PD,
    ∴2PD+PB=BP′+PB≥PP′,
    ∴PP′=,
    ∴2PD+PB≥4,
    ∴2PD+PB的最小值为4,
    故选D.
    【点睛】
    本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
    10、A
    【解析】
    试题分析:原方程变形为:x(x-1)=0
    x1=0,x1=1.
    故选A.
    考点:解一元二次方程-因式分解法.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
    详解:∵点G是△ABC重心,BC=6,
    ∴CD=BC=3,AG:AD=2:3,
    ∵GE∥BC,
    ∴△AEG∽△ADC,
    ∴GE:CD=AG:AD=2:3,
    ∴GE=2.
    故答案为2.
    点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
    12、
    【解析】
    由图形可得:
    13、m.
    【解析】
    利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
    【详解】
    解:易得扇形的圆心角所对的弦是直径,
    ∴扇形的半径为: m,
    ∴扇形的弧长为: =πm,
    ∴圆锥的底面半径为:π÷2π=m.
    【点睛】
    本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
    14、∠A=∠C或∠ADC=∠ABC
    【解析】
    本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
    【详解】
    添加条件可以是:∠A=∠C或∠ADC=∠ABC.
    ∵添加∠A=∠C根据AAS判定△AOD≌△COB,
    添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
    故填空答案:∠A=∠C或∠ADC=∠ABC.
    【点睛】
    本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.
    15、18π
    【解析】
    根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
    【详解】
    解:∵正六边形的内角为=120°,
    ∴扇形的圆心角为360°−120°=240°,
    ∴“三叶草”图案中阴影部分的面积为=18π,
    故答案为18π.
    【点睛】
    此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
    16、x=0或x=1.
    【解析】
    利用因式分解法求解可得.
    【详解】
    ∵(x﹣1)﹣(x+1)(x﹣1)=0,
    ∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
    则x=0或x=1,
    故答案为:x=0或x=1.
    【点睛】
    本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)两次下降的百分率为10%;
    (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
    【解析】
    (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
    【详解】
    解:(1)设每次降价的百分率为 x.
    40×(1﹣x)2=32.4
    x=10%或 190%(190%不符合题意,舍去)
    答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
    由题意,得

    解得:=1.1,=2.1,
    ∵有利于减少库存,∴y=2.1.
    答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
    18、(1)y=200x+74000(10≤x≤30)
    (2)有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【解析】
    (1)根据题意和表格中的数据可以得到y关于x的函数关系式;
    (2)根据题意可以得到相应的不等式,从而可以解答本题;
    (3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
    ∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
    (2)由题意可得,
    200x+74000≥79600,得x≥28,
    ∴28≤x≤30,x为整数,
    ∴x=28、29、30,
    ∴有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
    理由:∵y=200x+74000中y随x的增大而增大,
    ∴当x=30时,y取得最大值,此时y=80000,
    ∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【点睛】
    本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
    19、(1);(2)P(1,); (3)3或5.
    【解析】
    (1)将点A、B代入抛物线,用待定系数法求出解析式.
    (2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
    (3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
    【详解】
    解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
    ∴,解得,
    ∴抛物线解析式为,
    (2),
    ∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
    ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
    ∴,
    ∴,
    ∴,

    ∴P(1,),
    (3)设新抛物线的表达式为
    则,,DE=2
    过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF

    ∴,
    ∴FH=1.
    点D在y轴的正半轴上,则,
    ∴,
    ∴,
    ∴m=3,
    点D在y轴的负半轴上,则,
    ∴,
    ∴,
    ∴m=5,
    ∴综上所述m的值为3或5.
    【点睛】
    本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
    20、
    【解析】
    解:由①得③
    把③代入②得

    把代人③得
    ∴原方程组的解为
    21、(1)作图见解析(2)∠BDC=72°
    【解析】
    解:(1)作图如下:

    (2)∵在△ABC中,AB=AC,∠ABC=72°,
    ∴∠A=180°﹣2∠ABC=180°﹣144°=36°.
    ∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.
    ∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.
    (1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:
    ①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;
    ②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.
    (2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出
    ∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.
    22、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.
    【解析】
    (1)根据函数图象中的数据可以分别求得s与t的函数关系式;
    (2)根据(1)中的函数解析式可以解答本题.
    【详解】
    解:(1)设sA与t的函数关系式为sA=kt+b,
    ,得,
    即sA与t的函数关系式为sA=45t﹣45,
    设sB与t的函数关系式为sB=at,
    60=3a,得a=20,
    即sB与t的函数关系式为sB=20t;
    (2)|45t﹣45﹣20t|=15,
    解得,t1=,t2=,
    ,,
    即在A出发后小时或小时,两人相距15km.
    【点睛】
    本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.
    23、 (1)证明见解析;(2)
    【解析】
    试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
    (2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
    试题解析:(1)证明:连接OD,CD,

    ∵BC为⊙O直径,
    ∴∠BDC=90°,
    即CD⊥AB,
    ∵△ABC是等腰三角形,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∵D点在⊙O上,
    ∴DE为⊙O的切线;
    (2)解:∵∠A=∠B=30°,BC=4,
    ∴CD=BC=2,BD=BC•cos30°=2,
    ∴AD=BD=2,AB=2BD=4,
    ∴S△ABC=AB•CD=×4×2=4,
    ∵DE⊥AC,
    ∴DE=AD=×2=,
    AE=AD•cos30°=3,
    ∴S△ODE=OD•DE=×2×=,
    S△ADE=AE•DE=××3=,
    ∵S△BOD=S△BCD=×S△ABC=×4=,
    ∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
    24、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.

    相关试卷

    2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析: 这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    2022年北京市怀柔区达标名校中考数学猜题卷含解析: 这是一份2022年北京市怀柔区达标名校中考数学猜题卷含解析,共29页。试卷主要包含了点P等内容,欢迎下载使用。

    2022年广东省湛江雷州市达标名校中考猜题数学试卷含解析: 这是一份2022年广东省湛江雷州市达标名校中考猜题数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,已知,则的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map