2021-2022学年广东省茂名地区达标名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.图为小明和小红两人的解题过程.下列叙述正确的是( )
计算:+
A.只有小明的正确 B.只有小红的正确
C.小明、小红都正确 D.小明、小红都不正确
2.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
3.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )
A. B. C. D.
4.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A. B. C.. D.
5.函数在同一直角坐标系内的图象大致是( )
A. B. C. D.
6.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
7.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
8.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转 D.绕原点顺时针旋转
9.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米) | 2.10 | 2.20 | 2.25 | 2.30 | 2.35 | 2.40 | 2.45 | 2.50 |
人数 | 2 | 3 | 2 | 4 | 5 | 2 | 1 | 1 |
则下列叙述正确的是( )
A.这些运动员成绩的众数是 5
B.这些运动员成绩的中位数是 2.30
C.这些运动员的平均成绩是 2.25
D.这些运动员成绩的方差是 0.0725
10.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
二、填空题(共7小题,每小题3分,满分21分)
11.计算:=____.
12.如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°.
13.双曲线、在第一象限的图像如图,过y2上的任意一点A,作x
轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则=
.
14.已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是______.
15.若反比例函数的图象位于第二、四象限,则的取值范围是__.
16.若关于x的方程有两个相等的实数根,则m的值是_________.
17.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
三、解答题(共7小题,满分69分)
18.(10分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?
19.(5分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.
20.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
本次接受调查的跳水运动员人数为 ,图①中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
21.(10分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.
22.(10分)如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.
(1)求教学楼的高度;
(2)求的值.
23.(12分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.
24.(14分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
表1:甲调查九年级30位同学植树情况
每人植树棵数 | 7 | 8 | 9 | 10 |
人数 | 3 | 6 | 15 | 6 |
表2:乙调查三个年级各10位同学植树情况
每人植树棵数 | 6 | 7 | 8 | 9 | 10 |
人数 | 3 | 6 | 3 | 12 | 6 |
根据以上材料回答下列问题:
(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;
(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
直接利用分式的加减运算法则计算得出答案.
【详解】
解:
=﹣+
=﹣+
=
=,
故小明、小红都不正确.
故选:D.
【点睛】
此题主要考查了分式的加减运算,正确进行通分运算是解题关键.
2、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
3、B
【解析】
连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
【详解】
解:连接OA、OB,
∵四边形ABCD是正方形,
∴∠AOB=90°,∠OAB=45°,
∴OA=ABcos45°=4×=2,
所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
故选B.
【点睛】
本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
4、B
【解析】
试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、不是轴对称图形,也不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.
考点:轴对称图形和中心对称图形
5、C
【解析】
根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a>0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A、D不正确;
由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,
但B中,一次函数a>0,b>0,排除B.
故选C.
6、B
【解析】
解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
根据作图过程可知:PB=CP,
∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
∵∠ABC=90°,∴PD∥AB.
∴E为AC的中点,∴EC=EA,∵EB=EC.
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
∴正确的有①②④.
故选B.
考点:线段垂直平分线的性质.
7、D
【解析】
分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
平均数为(12+5+9+5+14)÷5=9,故选项A正确;
重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
5出现了2次,最多,∴众数是5,故选项C正确;
极差为:14﹣5=9,故选项D错误.
故选D
8、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
9、B
【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是 2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
10、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
【详解】
解:∵12=21,
∴=1,
故答案为:1.
【点睛】
本题考查了算术平方根的定义,先把化简是解题的关键.
12、18°
【解析】
由折叠的性质可得∠ABC=∠CBD,根据在同圆和等圆中,相等的圆周角所对的弧相等可得,再由和半圆的弧度为180°可得 的度数×5=180°,即可求得的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.
【详解】
解:由折叠的性质可得∠ABC=∠CBD,
∴,
∵,
∴的度数+ 的度数+ 的度数=180°,
即的度数×5=180°,
∴的度数为36°,
∴∠B=18°.
故答案为:18.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 还考查了圆弧的度数与圆周角之间的关系.
13、
【解析】
设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,).
∵AC⊥y轴,AE⊥x轴,
∴C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为a.
∵B点、D点在上,∴当y=时,x=;当x=a,y=.
∴B点坐标为(,),D点坐标为(a,).
∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.
又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.
14、x<-2或x>1
【解析】
试题分析:根据函数图象可得:当时,x<-2或x>1.
考点:函数图象的性质
15、k>1
【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
【详解】
∵反比例函数y=的图象在第二、四象限,
∴1-k<0,
∴k>1.
故答案为:k>1.
【点睛】
此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
16、m=-
【解析】
根据题意可以得到△=0,从而可以求得m的值.
【详解】
∵关于x的方程有两个相等的实数根,
∴△=,
解得:.
故答案为.
17、或
【解析】
分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
【详解】
解:当0°<x°≤90°时,如图所示:连接OC,
由圆周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所对的劣弧长=,
当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
故答案为:或.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)答案见解析(2)36°(3)4550名
【解析】
试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
(2)利用360乘以对应的比例即可求解;
(3)利用总人数6500乘以对应的比例即可求解.
(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,
;
(2)360×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
19、(1)m>;(2)x1=0,x2=1.
【解析】
解答本题的关键是是掌握好一元二次方程的根的判别式.
(1)求出△=5+4m>0即可求出m的取值范围;
(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.
【详解】
解:(1)△=1+4(m+2)
=9+4m>0
∴.
(2)∵为符合条件的最小整数,
∴m=﹣2.
∴原方程变为
∴x1=0,x2=1.
考点:1.解一元二次方程;2.根的判别式.
20、(1)40人;1;(2)平均数是15;众数16;中位数15.
【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
【详解】
解:(1)4÷10%=40(人),
m=100-27.5-25-7.5-10=1;
故答案为40,1.
(2)观察条形统计图,
∵,
∴这组数据的平均数为15;
∵在这组数据中,16出现了12次,出现的次数最多,
∴这组数据的众数为16;
∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
∴这组数据的中位数为15.
【点睛】
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
21、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【详解】
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵MN//AB,
∴四边形ADEC为平行四边形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
【点睛】
本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
22、(1)12m;(2)
【解析】
(1)利用即可求解;
(2)通过三角形外角的性质得出,则,设,则,在 中利用勾股定理即可求出BC,BD的长度,最后利用即可求解.
【详解】
解:(1)在中,,
答:教学楼的高度为;
(2)
设,则,
故,
解得:,
则
故.
【点睛】
本题主要考查解直角三角形,掌握勾股定理及正切,余弦的定义是解题的关键.
23、(1);(2)P在第二象限,Q在第三象限.
【解析】
试题分析:(1)求出点B坐标即可解决问题;
(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24、(1)9,9;(2)乙;(3)1680棵;
【解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
【详解】
(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
故答案为:9,9;
(2)乙同学所抽取的样本能更好反映此次植树活动情况;
故答案为:乙;
(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
答:本次活动200位同学一共植树1680棵.
【点睛】
本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
江苏泰州地区达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏泰州地区达标名校2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若M,二次函数等内容,欢迎下载使用。
广东省茂名地区达标名校2022年中考数学猜题卷含解析: 这是一份广东省茂名地区达标名校2022年中考数学猜题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,直线y=3x+1不经过的象限是等内容,欢迎下载使用。
广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。