2022年北京市怀柔区达标名校中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一个正n边形的每个内角为120°,则这个多边形的对角线有( )
A.5条 B.6条 C.8条 D.9条
2.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A. B.
C. D.
3.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于( )
A.90° B.120° C.60° D.30°
4.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
5.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
6.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A. B. C. D.
7.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
8.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
9.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个 B.2 个 C.3 个 D.4个
10.式子在实数范围内有意义,则x的取值范围是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
11.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
12.在解方程-1=时,两边同时乘6,去分母后,正确的是( )
A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.
14.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.
15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.
16.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
17.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.
18.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.
(1)求抛物线的解析式;
(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;
(3)求△BCE的面积最大值.
20.(6分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.
(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;
(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;
(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.
21.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.
22.(8分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
(2)当CB平分∠DCO时,求m的值.
23.(8分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.
(1)求证:四边形ENFM为平行四边形;
(2)当四边形ENFM为矩形时,求证:BE=BN.
24.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
25.(10分)已知,抛物线(为常数).
(1)抛物线的顶点坐标为( , )(用含的代数式表示);
(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
26.(12分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).
27.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
【详解】
解:∵多边形的每一个内角都等于120°,
∴每个外角是60度,
则多边形的边数为360°÷60°=6,
则该多边形有6个顶点,
则此多边形从一个顶点出发的对角线共有6﹣3=3条.
∴这个多边形的对角线有(6×3)=9条,
故选:D.
【点睛】
本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
2、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
3、C
【解析】
解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故选C.
点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
4、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
【点睛】
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
5、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
6、B
【解析】
试题解析:列表如下:
∴共有20种等可能的结果,P(一男一女)=.
故选B.
7、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
8、B
【解析】
先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
【详解】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,
CF2+CD2=DF2,
即x2+1=(2-x)2,
解得:x=,
∴sin∠BED=sin∠CDF=.
故选B.
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
9、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
10、B
【解析】
根据二次根式有意义的条件可得 ,再解不等式即可.
【详解】
解:由题意得:,
解得:,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
11、C
【解析】
首先提取公因式2a,进而利用完全平方公式分解因式即可.
【详解】
解:8a3﹣8a2+2a
=2a(4a2﹣4a+1)
=2a(2a﹣1)2,故选C.
【点睛】
本题因式分解中提公因式法与公式法的综合运用.
12、D
【解析】
解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
【详解】
连接AG,延长AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案为.
【点睛】
本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
14、
【解析】
分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC
为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.
详解:如图1,连接AO,
∵AB=AC,点O是BC的中点,
∴AO⊥BC,
又∵
∴
∴
∴弧BC的长为:(m),
∴将剪下的扇形围成的圆锥的半径是:
(m),
∴圆锥的高是:
故答案为.
点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.
15、
【解析】
试题解析:连接
∵四边形ABCD是矩形,
∴CE=BC=4,
∴CE=2CD,
由勾股定理得:
∴阴影部分的面积是S=S扇形CEB′−S△CDE
故答案为
16、=
【解析】
探究规律后,写出第n个等式即可求解.
【详解】
解:
…
则第n个等式为
故答案为:
【点睛】
本题主要考查二次根式的应用,找到规律是解题的关键.
17、2
【解析】
试题解析:连接EG,
∵由作图可知AD=AE,AG是∠BAD的平分线,
∴∠1=∠2,
∴AG⊥DE,OD=DE=1.
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2=∠1,
∴∠1=∠1,
∴AD=DG.
∵AG⊥DE,
∴OA=AG.
在Rt△AOD中,OA==4,
∴AG=2AO=2.
故答案为2.
18、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.
【解析】
分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.
详解:(1)∵抛物线 过点A(1,0)和B(1,0)
(2)∵
∴点C为线段DE中点
设点E(a,b)
∵0<m<1,
∴当m=1时,纵坐标最小值为2
当m=1时,最大值为2
∴点E纵坐标的范围为
(1)连结BD,过点D作x轴的垂线交BC于点H
∵CE=CD
∴H(m,-m+1)
∴
当m=1.5时,
.
点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.
20、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2
【解析】
(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;
(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;
(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.
【详解】
(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),
∴AB==5,
根据题意得点A,B的“确定圆”半径为5,
∴S圆=π×52=25π.
故答案为25π;
(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积
为9π,
∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,
∴AB⊥CD,∠DCA=45°.
,
①当b>0时,则点B在第二象限.
过点B作BE⊥x轴于点E,
∵在Rt△BEA中,∠BAE=45°,AB=3,
∴.
∴.
②当b<0时,则点B'在第四象限.
同理可得.
综上所述,点B的坐标为或.
(3)如图2,
,
直线当y=0时,x=3,即C(3,0).
∵tan∠BCP=,
∴∠BCP=30°,
∴PC=2PB.
P到直线的距离最小是PB=4,
∴PC=1.
3-1=-5,P1(-5,0),
3+1=2,P(2,0),
当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.
点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.
【点睛】
本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.
21、(1)y=60x;(2)300
【解析】
(1)由题图可知,甲组的y是x的正比例函数.
设甲组加工的零件数量y与时间x的函数关系式为y=kx.
根据题意,得6k=360,
解得k=60.
所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
所以,解得a=300.
22、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=;
【解析】
(1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,
然后把一般式配成顶点式得到D点坐标;
②如图1,先解方程﹣x2+2x+3=0得B(3,0),则可判断△OCB为等腰直角三角形得到∠
OBC=45°,再证明△CDE为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE;
(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得
到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程﹣x2+2mx+3m2=0
得B(3m,0),同时确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证
明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.
【详解】
(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),
∴抛物线解析式为y=﹣x2+2x+3;
∵
∴顶点D为(1,4);
②证明:如图1,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),
∵OC=OB,
∴△OCB为等腰直角三角形,
∴∠OBC=45°,
∵CE⊥直线x=1,
∴∠BCE=45°,
∵DE=1,CE=1,
∴△CDE为等腰直角三角形,
∴∠DCE=45°,
∴∠DCE=∠BCE;
(2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,
∴抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),
当y=0时,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,则B(3m,0),
当x=0时,y=﹣x2+2mx+3m2=3m2,则C(0,3m2),
∵GF∥OC,
∴即 解得GF=2m2,
∴DG=4m2﹣2m2=2m2,
∵CB平分∠DCO,
∴∠DCB=∠OCB,
∵∠OCB=∠DGC,
∴∠DCG=∠DGC,
∴DC=DG,
即m2+(4m2﹣3m2)2=4m4,
∴
而m>0,
∴
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.
23、(1)证明见解析;(2)证明见解析.
【解析】
分析:
(1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;
(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.
详解:
(1)∵四边形ABCD为平行四四边形边形,
∴AB//CD.
∴∠EAG=∠FCG.
∵点G为对角线AC的中点,
∴AG=GC.
∵∠AGE=∠FGC,
∴△EAG≌△FCG.
∴EG=FG.
同理MG=NG.
∴四边形ENFM为平行四边形.
(2)∵四边形ENFM为矩形,
∴EF=MN,且EG=,GN=,
∴EG=NG,
又∵AG=CG,∠AGE=∠CGN,
∴△EAG≌△NCG,
∴∠BAC=∠ACB ,AE=CN,
∴AB=BC,
∴AB-AE=CB-CN,
∴BE=BN.
点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.
24、AC= 6.0km,AB= 1.7km;
【解析】
在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
【详解】
由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵AC=,
∴AC=≈6.0km,
∵tan34°=,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km.
答:AC的长为6.0km,AB的长为1.7km.
【点睛】
本题主要考查三角函数的知识。
25、(1);(2)图象见解析,或;(3)
【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
【详解】
解:(1),
抛物线的顶点的坐标为.
故答案为:
(2)将代入抛物线的解析式得:
解得:,
抛物线的解析式为.
抛物线的大致图象如图所示:
将代入得:
,
解得:或
抛物线与反比例函数图象的交点坐标为或.
将代入得:,
.
将代入得:,
.
综上所述,反比例函数的表达式为或.
(3)设点的坐标为,
则点的坐标为,
的坐标为.
的长随的增大而减小.
矩形在其对称轴的左侧,抛物线的对称轴为,
当时,的长有最小值,的最小值.
的长度不变,
当最小时,有最小值.
的最小值
故答案为:.
【点睛】
本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
26、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
(Ⅲ)P().
【解析】
(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
(Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
【详解】
(Ⅰ)如图①中,作DH⊥BC于H,
∵△AOB是等边三角形,DC∥OA,
∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
∴△CDB是等边三角形,
∵CB=2,DH⊥CB,
∴CH=HB=,DH=3,
∴D(6﹣,3),
∵C′B=3,
∴CC′=2﹣3,
∴DD′=CC′=2﹣3,
∴D′(3+,3).
(Ⅱ)当BB'=时,四边形MBND'是菱形,
理由:如图②中,
∵△ABC是等边三角形,
∴∠ABO=60°,
∴∠ABB'=180°﹣∠ABO=120°,
∵BN是∠ACC'的角平分线,
∴∠NBB′'=∠ABB'=60°=∠D′C′B,
∴D'C'∥BN,∵AB∥B′D′
∴四边形MBND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MC′B'和△NBB'是等边三角形,
∴MC=CE',NC=CC',
∵B'C'=2,
∵四边形MBND'是菱形,
∴BN=BM,
∴BB'=B'C'=;
(Ⅲ)如图连接BP,
在△ABP中,由三角形三边关系得,AP<AB+BP,
∴当点A,B,P三点共线时,AP最大,
如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'==2.
此时P(,﹣).
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
27、 (1)见解析;(2).
【解析】
分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
详解:(1)连结OP、OA,OP交AD于E,如图,
∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
∴直线AB与⊙O相切;
(2)连结BD,交AC于点F,如图,
∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
∴DF=2,∴AD==2,∴AE=.
在Rt△PAE中,tan∠1==,∴PE=.
设⊙O的半径为R,则OE=R﹣,OA=R.
在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
∴R=,即⊙O的半径为.
点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。
2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析: 这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。
新青岛版达标名校2021-2022学年中考数学猜题卷含解析: 这是一份新青岛版达标名校2021-2022学年中考数学猜题卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列各数中,最小的数是等内容,欢迎下载使用。