广东省深圳市罗湖区重点中学2022年中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算中正确的是( )
A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
2.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
3.下列判断错误的是( )
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
4.如图所示是放置在正方形网格中的一个 ,则的值为( )
A. B. C. D.
5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①② B.①③④ C.①②③⑤ D.①②③④⑤
6.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A.3cm B. cm C.2.5cm D. cm
7.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
8.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为( )
A. B. C. D.
9.实数的相反数是( )
A. B. C. D.
10.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.
12.如图,若点 的坐标为 ,则 =________.
13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
14.因式分解:-2x2y+8xy-6y=__________.
15.若代数式的值不小于代数式的值,则x的取值范围是_____.
16.函数y=中,自变量x的取值范围是
三、解答题(共8题,共72分)
17.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
18.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s | 0 | 1 | 2 | 3 | … |
滑行距离y/m | 0 | 4 | 12 | 24 | … |
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
19.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
20.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
21.(8分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.
22.(10分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
23.(12分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
24.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
【详解】
A. x2+x2=2x2 ,故不正确;
B. x6÷x3=x3 ,故不正确;
C. (x3)2=x6 ,故正确;
D. x﹣1=,故不正确;
故选C.
【点睛】
本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
2、C
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
第一个图形不是轴对称图形,是中心对称图形;
第二、三、四个图形是轴对称图形,也是中心对称图形;
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、A
【解析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:、对角线相等的四边形是矩形,错误;
、对角线相互垂直平分的四边形是菱形,正确;
、对角线相互垂直且相等的平行四边形是正方形,正确;
、对角线相互平分的四边形是平行四边形,正确;
故选:.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
4、D
【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
【详解】
解:过点A向CB引垂线,与CB交于D,
△ABD是直角三角形,
∵BD=4,AD=2,
∴tan∠ABC=
故选:D.
【点睛】
此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
5、C
【解析】
根据二次函数的性质逐项分析可得解.
【详解】
解:由函数图象可得各系数的关系:a<0,b<0,c>0,
则①当x=1时,y=a+b+c<0,正确;
②当x=-1时,y=a-b+c>1,正确;
③abc>0,正确;
④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
故所有正确结论的序号是①②③⑤.
故选C
6、D
【解析】
分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
详解:连接OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
解得:OE=3,
∴OB=3+2=5,
∴EC=5+3=1.
在Rt△EBC中,BC=.
∵OF⊥BC,
∴∠OFC=∠CEB=90°.
∵∠C=∠C,
∴△OFC∽△BEC,
∴,即,
解得:OF=.
故选D.
点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
7、D
【解析】
因为,所以,因为,故选D.
8、A
【解析】
设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
【详解】
解:设袋子中黄球有x个,
根据题意,得:,
解得:x=3,
即袋中黄球有3个,
所以随机摸出一个黄球的概率为,
故选A.
【点睛】
此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
9、D
【解析】
根据相反数的定义求解即可.
【详解】
的相反数是-,
故选D.
【点睛】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
10、D
【解析】
根据抛物线和直线的关系分析.
【详解】
由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
故选D
【点睛】
考核知识点:反比例函数图象.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
∴点A的坐标为(1,1), ∴k=1×1=1.
点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
12、
【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.
【详解】
如图,由勾股定理,得:OA==1.sin∠1=,故答案为.
13、.
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
考点:列表法与树状图法.
14、-2 y (x-1)( x-3)
【解析】
分析:提取公因式法和十字相乘法相结合因式分解即可.
详解:原式
故答案为
点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.
15、x≥
【解析】
根据题意列出不等式,依据解不等式得基本步骤求解可得.
【详解】
解:根据题意,得:,
6(3x﹣1)≥5(1﹣5x),
18x﹣6≥5﹣25x,
18x+25x≥5+6,
43x≥11,
x≥,
故答案为x≥.
【点睛】
本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.
16、x≥0且x≠1
【解析】
试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.
试题解析:根据题意可得x-1≠0;
解得x≠1;
故答案为x≠1.
考点: 函数自变量的取值范围;分式有意义的条件.
三、解答题(共8题,共72分)
17、(1)100;(2)作图见解析;(3)1.
【解析】
试题分析:(1)根据百分比= 计算即可;
(2)求出“打球”和“其他”的人数,画出条形图即可;
(3)用样本估计总体的思想解决问题即可.
试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
故答案为100;
(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
18、(1)20s;(2)
【解析】
(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
(2)根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:(1)∵该抛物线过点(0,0),
∴设抛物线解析式为y=ax2+bx,
将(1,4)、(2,12)代入,得:
,
解得:,
所以抛物线的解析式为y=2x2+2x,
当y=840时,2x2+2x=840,
解得:x=20(负值舍去),
即他需要20s才能到达终点;
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
【点睛】
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
19、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
20、3
【解析】
试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
试题解析:∵BD3+AD3=63+83=303=AB3,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,CD=,
∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
因此△ABC的面积为3.
答:△ABC的面积是3.
考点:3.勾股定理的逆定理;3.勾股定理.
21、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;
(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.
试题解析:(1)∵CG2=GE•GD,∴.
又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.
∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.
(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.
又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE•CG=EG•CB.
考点:相似三角形的判定与性质.
22、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
【解析】
(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
【详解】
(1)设商场第一次购进x套运动服,由题意得
解这个方程,得
经检验,是所列方程的根
.
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意得
,
解这个不等式,得
答:每套运动服的售价至少是200元.
【点睛】
此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
23、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
24、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
2024年广东省深圳市罗湖区中考数学二模试卷(含解析): 这是一份2024年广东省深圳市罗湖区中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版): 这是一份2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市罗湖区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市罗湖区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。