年终活动
搜索
    上传资料 赚现金

    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题

    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题第1页
    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题第2页
    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题第3页
    还剩45页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题

    展开

    这是一份山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题,共48页。试卷主要包含了﹣1,计算,解不等式组,,与y轴交于点B等内容,欢迎下载使用。
    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题
    一.实数的运算(共3小题)
    1.(2022•济南)计算:|﹣3|﹣4sin30°++()﹣1.
    2.(2021•济南)计算:.
    3.(2020•济南)计算:()0﹣2sin30°++()﹣1.
    二.分式方程的应用(共1小题)
    4.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
    (1)求甲、乙两种粽子的单价分别是多少元?
    (2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
    三.一元一次不等式组的整数解(共3小题)
    5.(2022•济南)解不等式组:,并写出它的所有整数解.
    6.(2021•济南)解不等式组:并写出它的所有整数解.
    7.(2020•济南)解不等式组:,并写出它的所有整数解.
    四.一次函数的应用(共2小题)
    8.(2022•济南)为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.
    (1)求甲、乙两种树苗每棵的价格分别是多少元?
    (2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍.则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.
    9.(2020•济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格
    价格
    型号
    进价(元/部)
    售价(元/部)
    A
    3000
    3400
    B
    3500
    4000
    某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
    (1)营业厅购进A、B两种型号手机各多少部?
    (2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?
    五.反比例函数综合题(共3小题)
    10.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.
    (1)求a,k的值;
    (2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
    ①求△ABC的面积;
    ②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.

    11.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.
    (1)求k的值并直接写出点B的坐标;
    (2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;
    (3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

    12.(2020•济南)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.
    (1)求反比例函数关系式和点E的坐标;
    (2)写出DE与AC的位置关系并说明理由;
    (3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.

    六.二次函数综合题(共3小题)
    13.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
    (1)求抛物线的表达式和t,k的值;
    (2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
    (3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.

    14.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
    (1)求抛物线的表达式及点C的坐标;
    (2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
    (3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.

    15.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
    (1)求抛物线的解析式及C点坐标;
    (2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
    (3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.

    七.平行四边形的性质(共1小题)
    16.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.

    八.菱形的性质(共2小题)
    17.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.

    18.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.

    九.四边形综合题(共1小题)
    19.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.
    (1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;
    (2)当0°<α<180°时,
    ①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;
    ②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.

    一十.切线的性质(共3小题)
    20.(2022•济南)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.
    (1)求证:CA=CD;
    (2)若AB=12,求线段BF的长.

    21.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.
    (1)求证:∠DAB=2∠ABC;
    (2)若tan∠ADC=,BC=4,求⊙O的半径.

    22.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.
    (1)求证:AC是∠DAB的角平分线;
    (2)若AD=2,AB=3,求AC的长.

    一十一.几何变换综合题(共1小题)
    23.(2022•济南)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
    (1)判断线段BD与CE的数量关系并给出证明;
    (2)延长ED交直线BC于点F.
    ①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为    ;
    ②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.


    一十二.相似形综合题(共1小题)
    24.(2020•济南)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
    (1)当∠CAB=45°时.
    ①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是   .线段BE与线段CF的数量关系是   ;
    ②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
    学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
    思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
    思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解决问题.
    (2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.

    一十三.频数(率)分布直方图(共2小题)
    25.(2022•济南)某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:
    a:七年级抽取成绩的频数分布直方图如图.
    (数据分成5组,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)

    b:七年级抽取成绩在70≤x<80这一组的是:
    70,72,73,73,75,75,75,76,
    77,77,78,78,79,79,79,79.
    c:七、八年级抽取成绩的平均数、中位数如下:
    年级
    平均数
    中位数
    七年级
    76.5
    m
    八年级
    78.2
    79
    请结合以上信息完成下列问题:
    (1)七年级抽取成绩在60≤x<90的人数是    ,并补全频数分布直方图;
    (2)表中m的值为    ;
    (3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则    (填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;
    (4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.
    26.(2020•济南)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:

    等级
    次数
    频率
    不合格
    100≤x<120
    a
    合格
    120≤x<140
    b
    良好
    140≤x<160

    优秀
    160≤x<180

    请结合上述信息完成下列问题:
    (1)a=   ,b=   ;
    (2)请补全频数分布直方图;
    (3)在扇形统计图中,“良好”等级对应的圆心角的度数是   ;
    (4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.
    一十四.扇形统计图(共1小题)
    27.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:
    方便筷使用数量在5≤x<15范围内的数据:
    5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.
    不完整的统计图表:
    方便筷使用数量统计表
    组别
    使用数量(双)
    频数
    A
    0≤x<5
    14
    B
    5≤x<10

    C
    10≤x<15

    D
    15≤x<20
    a
    E
    x≥20
    10
    合计

    50
    请结合以上信息回答下列问题:
    (1)统计表中的a=   ;
    (2)统计图中E组对应扇形的圆心角为    度;
    (3)C组数据的众数是    ;调查的50名居民5月份使用方便筷数量的中位数是    ;
    (4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.


    山东省济南市三年(2020-2022)中考数学真题分类汇编-解答题
    参考答案与试题解析
    一.实数的运算(共3小题)
    1.(2022•济南)计算:|﹣3|﹣4sin30°++()﹣1.
    【解答】解:原式=3﹣4×+2+3
    =3﹣2+2+3
    =6.
    2.(2021•济南)计算:.
    【解答】解:
    =4+1+3﹣2×1
    =8﹣2
    =6.
    3.(2020•济南)计算:()0﹣2sin30°++()﹣1.
    【解答】解:原式=1﹣2×+2+2
    =1﹣1+2+2
    =4.
    二.分式方程的应用(共1小题)
    4.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
    (1)求甲、乙两种粽子的单价分别是多少元?
    (2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
    【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,
    依题意得:﹣=50,
    解得:x=4,
    经检验,x=4是原方程的解,
    则2x=8,
    答:甲种粽子的单价为8元,乙种粽子的单价为4元.
    (2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,
    依题意得:8m+4(200﹣m)≤1150,
    解得:m≤87.5,
    答:最多购进87个甲种粽子.
    三.一元一次不等式组的整数解(共3小题)
    5.(2022•济南)解不等式组:,并写出它的所有整数解.
    【解答】解:解不等式①得:x<3,
    解不等式②得:x≥1,
    ∴原不等式组的解集为:1≤x<3,
    ∴整数解为1,2.
    6.(2021•济南)解不等式组:并写出它的所有整数解.
    【解答】解:解不等式①,得x≥﹣2,
    解不等式②,得x<1,
    ∴不等式组的解集为﹣2≤x<1,
    ∴不等式组的整数解有﹣2、﹣1、0.
    7.(2020•济南)解不等式组:,并写出它的所有整数解.
    【解答】解:,
    解不等式①得:x≤1,
    解不等式②得:x>﹣1,
    ∴不等式组的解集为﹣1<x≤1,
    ∴不等式组的所有整数解为0,1.
    四.一次函数的应用(共2小题)
    8.(2022•济南)为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.
    (1)求甲、乙两种树苗每棵的价格分别是多少元?
    (2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3倍.则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.
    【解答】解:(1)设甲种树苗每棵的价格是x元,乙种树苗每棵的价格是y元,
    根据题意得:,
    解得,
    答:甲种树苗每棵的价格是40元,乙种树苗每棵的价格是30元;
    (2)设购买两种树苗共花费w元,购买甲种树苗m棵,则购买乙种树苗(100﹣m)棵,
    ∵购买乙种树苗的数量不超过甲种树苗的3倍,
    ∴100﹣m≤3m,
    解得m≥25,
    根据题意:w=40m+30(100﹣m)=10m+3000,
    ∵10>0,
    ∴w随m的增大而增大,
    ∴m=25时,w取最小值,最小值为10×25+3000=3250(元),
    此时100﹣m=75,
    答:购买甲种树苗25棵,乙种树苗75棵,花费最少.
    9.(2020•济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格
    价格
    型号
    进价(元/部)
    售价(元/部)
    A
    3000
    3400
    B
    3500
    4000
    某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
    (1)营业厅购进A、B两种型号手机各多少部?
    (2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?
    【解答】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,

    解得,,
    答:营业厅购进A、B两种型号手机分别为6部、4部;
    (2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w元,
    w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,
    ∵B型手机的数量不多于A型手机数量的2倍,
    ∴30﹣x≤2x,
    解得,x≥10,
    ∵w=﹣100x+15000,k=﹣100,
    ∴w随x的增大而减小,
    ∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,
    答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.
    五.反比例函数综合题(共3小题)
    10.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.
    (1)求a,k的值;
    (2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
    ①求△ABC的面积;
    ②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.

    【解答】解:(1)把x=a,y=3代入y=x+1得,

    ∴a=4,
    把x=4,y=3代入y=得,
    3=,
    ∴k=12;
    (2)∵点A(4,3),D点的纵坐标是0,AD=AC,
    ∴点C的纵坐标是3×2﹣0=6,
    把y=6代入y=得x=2,
    ∴C(2,6),
    ①如图1,

    作CD⊥x轴于D,交AB于E,
    当x=2时,y==2,
    ∴E(2,2),
    ∵C(2,6),
    ∴CE=6﹣2=4,
    ∴xA==8;
    ②如图2,

    当AB是对角线时,即:四边形APBQ是平行四边形,
    ∵A(0,1),B(4,3),点Q的纵坐标为0,
    ∴yP=1+3﹣0=4,
    当y=4时,4=,
    ∴x=3,
    ∴P(3,4),
    当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),
    由yQ﹣yB=yP′﹣yA得,
    0﹣1=yP′﹣3,
    ∴yP′=2,
    当y=2时,x==6,
    ∴P′(6,2),
    综上所述:P(3,4)或(6,2).
    11.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.
    (1)求k的值并直接写出点B的坐标;
    (2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;
    (3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

    【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,
    得﹣3=m,
    解得:m=﹣2,
    ∴A(﹣2,﹣3),
    ∴k=﹣2×(﹣3)=6,
    ∴反比例函数解析式为y=,
    由,得或,
    ∴点B的坐标为(2,3);
    (2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,
    ∴BE∥CF,
    ∴△DCF∽△DBE,
    ∴=,
    ∵BC=2CD,BE=3,
    ∴=,
    ∴=,
    ∴CF=1,
    ∴C(6,1),
    作点B关于y轴的对称点B′,连接B′C交y轴于点G,
    则B′C即为BG+GC的最小值,
    ∵B′(﹣2,3),C(6,1),
    ∴B′C==2,
    ∴BG+GC=B′C=2;
    (3)存在.理由如下:
    ①当点P在x轴上时,如图2,设点P1的坐标为(a,0),
    过点B作BE⊥x轴于点E,
    ∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,
    ∴△OBE∽△OP1B,
    ∴=,
    ∵B(2,3),
    ∴OB==,
    ∴=,
    ∴a=,
    ∴点P1的坐标为(,0);
    ②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,
    设点P2的坐标为(0,b),
    ∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,
    ∴△BON∽△P2OB,
    ∴=,即=,
    ∴b=,
    ∴点P2的坐标为(0,);
    综上所述,点P的坐标为(,0)或(0,).


    12.(2020•济南)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.
    (1)求反比例函数关系式和点E的坐标;
    (2)写出DE与AC的位置关系并说明理由;
    (3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.

    【解答】解:(1)∵B(2,2),则BC=2,
    而BD=,
    ∴CD=2﹣=,故点D(,2),
    将点D的坐标代入反比例函数表达式得:2=,解得k=3,
    故反比例函数表达式为y=,
    当x=2时,y=,故点E(2,);

    (2)由(1)知,D(,2),点E(2,),点B(2,2),
    则BD=,BE=,
    故==,===,
    ∴DE∥AC;

    (3)①当点F在点C的下方时,
    当点G在点F的右方时,如下图,

    过点F作FH⊥y轴于点H,
    ∵四边形BCFG为菱形,则BC=CF=FG=BG=2,
    在Rt△OAC中,OA=BC=2,OC=AB=2,
    则tan∠OCA===,故∠OCA=30°,
    则FH=FC=1,CH=CF•cos∠OCA=2×=,
    故点F(1,),则点G(3,),
    当x=3时,y==,故点G在反比例函数图象上;
    ②当点F在点C的上方时,
    同理可得,点G(1,3),
    同理可得,点G在反比例函数图象上;
    综上,点G的坐标为(3,)或(1,3)都在反比例函数图象上.
    六.二次函数综合题(共3小题)
    13.(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.
    (1)求抛物线的表达式和t,k的值;
    (2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
    (3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.

    【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,
    ∴64a+22﹣6=0,
    ∴a=﹣,
    ∴y=﹣x2+x﹣6,
    当y=0时,﹣t2+t﹣6=0,
    解得t=3或t=8(舍),
    ∴t=3,
    ∵B(8,0)在直线y=kx﹣6上,
    ∴8k﹣6=0,
    解得k=,
    ∴y=x﹣6;
    (2)作PM⊥x轴交于M,
    ∵P点横坐标为m,
    ∴P(m,﹣m2+m﹣6),
    ∴PM=m2﹣m+6,AM=m﹣3,
    在Rt△COA和Rt△AMP中,
    ∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,
    ∴∠OAC=∠APM,
    ∴△COA∽△AMP,
    ∴=,即OA•MA=CO•PM,
    3(m﹣3)=6(m2﹣m+6),
    解得m=3(舍)或m=10,
    ∴P(10,﹣);
    (3)作PN⊥x轴交于BC于N,过点N作NE⊥y轴交于E,
    ∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,
    由△PQN∽△BOC,
    ∴==,
    ∵OB=8,OC=6,BC=10,
    ∴QN=PN,PQ=PN,
    由△CNE∽△CBO,
    ∴CN=EN=m,
    ∴CQ+PQ=CN+NQ+PQ=CN+PN,
    ∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(x﹣)2+,
    当m=时,CQ+PQ的最大值是.


    14.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.
    (1)求抛物线的表达式及点C的坐标;
    (2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;
    (3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.

    【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:

    解得:.
    ∴抛物线的表达式为y=﹣x2+2x+3.
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴顶点C(1,4).
    (2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,

    ∵A(﹣1,0),C(1,4),
    ∴OA=1,OE=1,CE=4.
    ∴OA=OE,AC==2.
    ∵FO⊥AB,CE⊥AB,
    ∴FO∥CE,
    ∴OF=CE=2,F为AC的中点.
    ∵△DAC是以AC为底的等腰三角形,
    ∴DF⊥AC.
    ∵FO⊥AD,
    ∴△AFO∽△FDO.
    ∴.
    ∴.
    ∴OD=4.
    ∴D(4,0).
    设直线CD的解析式为y=kx+m,
    ∴,
    解得:.
    ∴直线CD的解析式为y=﹣.
    ∴,
    解得:,.
    ∴P().
    (3)过点P作PH⊥AB于点H,如下图,

    则OH=,PH=,
    ∵OD=4,
    ∴HD=OD﹣OH=,
    ∴PD==.
    ∴PC=CD﹣PD=5﹣=.
    由(2)知:AC=2.
    设AF=x,AE=y,则CE=2﹣y.
    ∵DA=DC,
    ∴∠DAC=∠C.
    ∵∠CAB+∠AEF+∠AFE=180°,
    ∠AEF+∠PEF+∠CEP=180°,
    又∵∠PEF=∠CAB,
    ∴∠CEP=∠AFE.
    ∴△CEP∽△AFE.
    ∴.
    ∴.
    ∴x=﹣+y=﹣+.
    ∴当y=时,x即AF有最大值.
    ∵OA=1,
    ∴OF的最大值为﹣1=.
    ∵点F在线段AD上,
    ∴点F的横坐标m的取值范围为﹣1<m≤.
    15.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
    (1)求抛物线的解析式及C点坐标;
    (2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
    (3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.

    【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为y=﹣x2+2x+3,
    当x=0时,y=3,故点C(0,3);

    (2)当m=1时,点E(1,0),设点D的坐标为(1,a),
    由点A、C、D的坐标得,AC==,同理可得:AD=,CD=,
    ①当CD=AD时,即=,解得a=1;
    ②当AC=AD时,同理可得a=(舍去负值);
    故点D的坐标为(1,1)或(1,);

    (3)∵E(m,0),则设点M(m,﹣m2+2m+3),
    设直线BM的表达式为y=sx+t,则,解得,
    故直线BM的表达式为y=(﹣m﹣1)x+3m+3,
    当x=0时,y=3m+3,故点N(0,3m+3),则ON=3m+3;
    S1=AE×yM=×(m+1)×(﹣m2+2m+3),
    2S2=ON•xM=(3m+3)×m=S1=×(m+1)×(﹣m2+2m+3),
    解得m=﹣2±或﹣1(舍去负值),
    故m=﹣2.
    七.平行四边形的性质(共1小题)
    16.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.

    【解答】证明:∵▱ABCD的对角线AC,BD交于点O,
    ∴AO=CO,AD∥BC,
    ∴∠EAC=∠FCO,
    在△AOE和△COF中

    ∴△AOE≌△COF(ASA),
    ∴AE=CF.
    八.菱形的性质(共2小题)
    17.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.

    【解答】证明:∵四边形ABCD是菱形,
    ∴DA=DC,
    ∴∠DAC=∠DCA,
    ∵∠ADF=∠CDE,
    ∴∠ADF﹣∠EDF=∠CDE﹣∠EDF,
    ∴∠ADE=∠CDF,
    在△DAE和△DCF中,

    ∴△DAE≌△DCF(ASA),
    ∴AE=CF.
    18.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE=∠CBF.求证:DE=DF.

    【解答】证明:∵四边形ABCD是菱形,
    ∴AD=CD,AB=BC,∠A=∠C,
    又∵∠ABE=∠CBF,
    ∴△ABE≌△CBF(ASA),
    ∴AE=CF,
    ∴AD﹣AE=CD﹣CF,
    ∴DE=DF.
    九.四边形综合题(共1小题)
    19.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.
    (1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;
    (2)当0°<α<180°时,
    ①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;
    ②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.

    【解答】解:(1)如图1,当α=180°时,点E在线段BC上,
    ∵BD=BC,
    ∴DE=BD=BC,
    ∴BD=DE=EC,
    ∵△CEF是等腰直角三角形,
    ∴∠CFE=∠BAC=90°,
    ∵∠ECF=∠BCA=45°,
    ∴△ABC∽△FEC,
    ∴==,
    ∴==,
    ∵BC=AC,
    ∴==,
    ∴=,即==,
    ∴=•=×=;
    (2)①=仍然成立.
    理由如下:
    如图2,∵△CEF是等腰直角三角形,
    ∴∠ECF=45°,=,
    ∵在△ABC中,∠BAC=90°,AB=AC,
    ∴∠BCA=45°,=,
    ∴∠ECF=∠BCA,=,
    ∴∠ACF+∠ACE=∠BCE+∠ACE,
    ∴∠ACF=∠BCE,
    ∵=,
    ∴△CAF∽△CBE,
    ∴==,
    ∴=仍然成立.
    ②四边形AECF是平行四边形.
    理由如下:
    如图3,过点D作DG⊥BF于点G,
    由旋转得:DE=BD=BC,
    ∵∠BGD=∠BFC=90°,∠DBG=∠CBF,
    ∴△BDG∽△BCF,
    ∴===,
    ∵BD=DE,DG⊥BE,
    ∴BG=EG,
    ∴BG=EG=EF,
    ∵EF=CF,
    ∴CF=BG=BF,
    由①知,AF=BE=BG=CF=CE,
    ∵△CAF∽△CBE,
    ∴∠CAF=∠CBE,∠ACF=∠BCE,
    ∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,
    ∴∠CBE=∠ACE,
    ∴∠CAF=∠ACE,
    ∴AF∥CE,
    ∵AF=CE,
    ∴四边形AECF是平行四边形.



    一十.切线的性质(共3小题)
    20.(2022•济南)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.
    (1)求证:CA=CD;
    (2)若AB=12,求线段BF的长.

    【解答】(1)证明:连接OC,

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∵∠D=30°,
    ∴∠COD=90°﹣∠D=60°,
    ∴∠A=∠COD=30°,
    ∴∠A=∠D=30°,
    ∴CA=CD;
    (2)解:∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∵∠A=30°,AB=12,
    ∴BC=AB=6,
    ∵CE平分∠ACB,
    ∴∠BCE=∠ACB=45°,
    ∵BF⊥CE,
    ∴∠BFC=90°,
    ∴BF=BC•sin45°=6×=3,
    ∴线段BF的长为3.

    21.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.
    (1)求证:∠DAB=2∠ABC;
    (2)若tan∠ADC=,BC=4,求⊙O的半径.

    【解答】(1)证明:连接OC,
    ∵EC是⊙O的切线,
    ∴OC⊥CE,
    ∵DE⊥CE,
    ∴OC∥DE,
    ∴∠DAB=∠AOC,
    由圆周角定理得:∠AOC=2∠ABC,
    ∴∠DAB=2∠ABC;
    (2)解:连接AC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    由圆周角定理得:∠ABC=∠ADC,
    ∴tan∠ABC=tan∠ADC=,即=,
    ∵BC=4,
    ∴AC=2,
    由勾股定理得:AB===2,
    ∴⊙O的半径为.

    22.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.
    (1)求证:AC是∠DAB的角平分线;
    (2)若AD=2,AB=3,求AC的长.

    【解答】解:(1)证明:连接OC,如图,

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∴∠ACD+∠ACO=90°,
    ∵AD⊥DC,
    ∴∠ADC=90°,
    ∴∠ACD+∠DAC=90°,
    ∴∠ACO=∠DAC,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∴∠DAC=∠OAC,
    ∴AC是∠DAB的角平分线;
    (2)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠D=∠ACB=90°,
    ∵∠DAC=∠BAC,
    ∴Rt△ADC∽Rt△ACB,
    ∴=,
    ∴AC2=AD•AB=2×3=6,
    ∴AC=.
    一十一.几何变换综合题(共1小题)
    23.(2022•济南)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
    (1)判断线段BD与CE的数量关系并给出证明;
    (2)延长ED交直线BC于点F.
    ①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为  AE=BE﹣CE ;
    ②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.


    【解答】解:(1)BD=CE,理由如下:
    ∵△ABC是等边三角形,
    ∴∠BAC=60°,AB=AC,
    ∵AE是由AD绕点A逆时针旋转60°得到的,
    ∴∠DAE=60°,AD=AE,
    ∴∠BAC=∠DAE,
    ∴∠BAC﹣DAC=∠DAE﹣∠DAC,
    即:∠BAD=∠CAE,
    在△BAD和△CAE中,

    ∴△BAD≌△CAE(SAS),
    ∴BD=CE
    (2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,
    ∴△ADE是等边三角形,
    ∴DE=AE,
    ∴AE=DE=BE﹣BD=BE﹣CE,
    故答案为:AE=BE﹣CE;
    ②如图,

    ∠BAD=45°,理由如下:
    连接AF,作AG⊥DE于G,
    ∴∠ACG=90°,
    ∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,
    ∴AF⊥BC,∠ABF=∠ADG=60°,
    ∴∠AFB=∠AGD,
    ∴△ABF∽△ADG,
    ∴,∠BAF=∠DAG,
    ∴∠BAF+∠DAF=∠DAG+∠DAF,
    ∴∠BAD=∠FAG,
    ∴△ABG∽△AFG,
    ∴∠ADB=∠AGF=90°,
    由(1)得:BD=CE,
    ∵CE=DE=AD,
    ∴AD=BD,
    ∴∠BAD=45°.
    一十二.相似形综合题(共1小题)
    24.(2020•济南)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
    (1)当∠CAB=45°时.
    ①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是 ∠EAB=∠CBA .线段BE与线段CF的数量关系是 CF=BE ;
    ②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
    学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
    思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
    思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解决问题.
    (2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.

    【解答】解:(1)①如图1中,设DE交AB于T.

    ∵CA=CB,∠CAB=45°,
    ∴∠CAB=∠ABC=45°,
    ∴∠ACB=90°,
    ∵∠ADE=∠ACB=45°,∠DAE=90°,
    ∴∠ADE=∠AED=45°,
    ∴AD=AE,
    ∵∠DAT=∠EAT=45°,
    ∴AT⊥DE,DT=ET,
    ∴AB垂直平分DE,
    ∴BD=BE,
    ∵∠BCD=90°,DF=FB,
    ∴CF=BD,
    ∴CF=BE.
    ∵∠CBA=45°,∠EAB=45°,
    ∴∠EAB=∠ABC.
    故答案为:∠EAB=∠ABC,CF=BE.

    ②结论不变.
    解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.

    ∵∠ACB=90°,CA=CB,AM=BM,
    ∴CM⊥AB,CM=BM=AM,
    设AD=AE=y.FM=x,DM=a,则DF=FB=a+x,
    ∵AM=BM,
    ∴y+a=a+2x,
    ∴y=2x,即AD=2FM,
    ∵AM=BM,EN=BN,
    ∴AE=2MN,MN∥AE,
    ∴MN=FM,∠BMN=∠EAB=90°,
    ∴∠CMF=∠BMN=90°,
    ∴△CMF≌△BMN(SAS),
    ∴CF=BN,
    ∵BE=2BN,
    ∴CF=BE.

    解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.

    ∵AD=AE,∠EAD=90°,EG=DG,
    ∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
    ∵∠CAB=45°,
    ∴∠CAG=90°,
    ∴AC⊥AG,
    ∴AC∥DE,
    ∵∠ACB=∠CBT=90°,
    ∴AC∥BT∥DE,
    ∵AG=BT,
    ∴DG=BT=EG,
    ∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
    ∴BD与GT互相平分,
    ∵点F是BD的中点,
    ∴BD与GT交于点F,
    ∴GF=FT,
    ∵△GCT是等腰直角三角形,
    ∴CF=FG=FT,
    ∴CF=BE.

    (2)结论:BE=2CF.
    理由:如图3中,取AB的中点T,连接CT,FT.

    ∵CA=CB,
    ∴∠CAB=∠CBA=30°,∠ACB=120°,
    ∵AT=TB,
    ∴CT⊥AB,
    ∴AT=CT,
    ∴AB=2CT,
    ∵DF=FB,AT=TB,
    ∴TF∥AD,AD=2FT,
    ∴∠FTB=∠CAB=30°,
    ∵∠CTB=∠DAE=90°,
    ∴∠CTF=∠BAE=60°,
    ∵∠ADE=∠ACB=60°,
    ∴AE=AD=2FT,
    ∴==2,
    ∴△BAE∽△CTF,
    ∴==2,
    ∴BE=2CF.
    一十三.频数(率)分布直方图(共2小题)
    25.(2022•济南)某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:
    a:七年级抽取成绩的频数分布直方图如图.
    (数据分成5组,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)

    b:七年级抽取成绩在70≤x<80这一组的是:
    70,72,73,73,75,75,75,76,
    77,77,78,78,79,79,79,79.
    c:七、八年级抽取成绩的平均数、中位数如下:
    年级
    平均数
    中位数
    七年级
    76.5
    m
    八年级
    78.2
    79
    请结合以上信息完成下列问题:
    (1)七年级抽取成绩在60≤x<90的人数是  38 ,并补全频数分布直方图;
    (2)表中m的值为  82 ;
    (3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则  甲 (填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;
    (4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.
    【解答】解:(1)成绩在60≤x<90的人数为12+16+10=38,

    故答案为:38;
    (2)第25,26名学生的成绩分别为77,77,所以m==77,
    故答案为:77;
    (3)∵78大于七年级的中位数,而小于八年级的中位数.
    ∴甲的成绩在本年级抽取成绩中排名更靠前;
    故答案为:甲;
    (4)400×=64(人),
    即估计七年级竞赛成绩90分及以上的学生人数为64.
    26.(2020•济南)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:

    等级
    次数
    频率
    不合格
    100≤x<120
    a
    合格
    120≤x<140
    b
    良好
    140≤x<160

    优秀
    160≤x<180

    请结合上述信息完成下列问题:
    (1)a= 0.1 ,b= 0.35 ;
    (2)请补全频数分布直方图;
    (3)在扇形统计图中,“良好”等级对应的圆心角的度数是 108° ;
    (4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.
    【解答】解:(1)根据频数分布直方图可知:a=4÷40=0.1,
    因为40×25%=10,
    所以b=(40﹣4﹣12﹣10)÷40=14÷40=0.35,
    故答案为:0.1;0.35;
    (2)如图,即为补全的频数分布直方图;

    (3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;
    故答案为:108°;
    (4)因为2000×=1800(人),
    所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800人.
    一十四.扇形统计图(共1小题)
    27.(2021•济南)为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:
    方便筷使用数量在5≤x<15范围内的数据:
    5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.
    不完整的统计图表:
    方便筷使用数量统计表
    组别
    使用数量(双)
    频数
    A
    0≤x<5
    14
    B
    5≤x<10

    C
    10≤x<15

    D
    15≤x<20
    a
    E
    x≥20
    10
    合计

    50
    请结合以上信息回答下列问题:
    (1)统计表中的a= 9 ;
    (2)统计图中E组对应扇形的圆心角为  72 度;
    (3)C组数据的众数是  12 ;调查的50名居民5月份使用方便筷数量的中位数是  10 ;
    (4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.

    【解答】解:(1)方便筷使用数量在5≤x<15范围内的数据有17个,
    ∴a=50﹣14﹣17﹣10=9,
    故答案为:9;
    (2)360°×=72°,
    故答案为:72;
    (3)将方便筷使用数量在10≤x<15范围内的数据按从小到大的顺序排列为10,10,11,12,12,12,13,
    由上述数据可得C组数据的众数是12,
    B组的频数是10,C组的频数为7,D组的频数为9,
    ∴第25,26个数均为10,
    ∴调查的50名居民5月份使用方便筷数量的中位数是=10.
    故答案为:12,10;
    (4)2000×=760(人),
    答:估计该社区2000名居民5月份使用方便筷数量不少于15双的人数为760人.

    相关试卷

    山东省菏泽市三年(2020-2022)中考数学真题分类汇编-03解答题:

    这是一份山东省菏泽市三年(2020-2022)中考数学真题分类汇编-03解答题,共45页。试卷主要包含了﹣1,2020,先化简,再求值,解应用题,两点等内容,欢迎下载使用。

    西藏三年(2020-2022)中考数学真题分类汇编-解答题:

    这是一份西藏三年(2020-2022)中考数学真题分类汇编-解答题,共35页。试卷主要包含了0﹣+tan45°,计算,,其中a=10,解应用题,解不等式组,,设△AOP的面积为S等内容,欢迎下载使用。

    山东省济南市三年(2020-2022)中考数学真题分类汇编-填空题:

    这是一份山东省济南市三年(2020-2022)中考数学真题分类汇编-填空题,共16页。试卷主要包含了分解因式,因式分解等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map