北京清华大附属中学2022年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
2.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )
A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
3.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米
A. B. C. D.
4.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
5.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
6.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).
A. B. C. D.
7.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:
①年用水量不超过180m1的该市居民家庭按第一档水价交费;
②年用水量不超过240m1的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150~180m1之间;
④该市居民家庭年用水量的众数约为110m1.
其中合理的是( )
A.①③ B.①④ C.②③ D.②④
8.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为( )
A.(0,1) B.(0,2) C. D.(0,3)
9.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A.50,50 B.50,30 C.80,50 D.30,50
10.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
二、填空题(共7小题,每小题3分,满分21分)
11.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.
12.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
13.分解因式:2a4﹣4a2+2=_____.
14.在函数中,自变量x的取值范围是_________.
15.计算:2(a-b)+3b=___________.
16.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
17.正十二边形每个内角的度数为 .
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
19.(5分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=______,连接OF;
(3)在CD边上取点G,使CG=______,连接OG;
(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
20.(8分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
21.(10分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.
若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?
若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?
若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只
22.(10分)问题提出
(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圆半径R的值;
问题探究
(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;
问题解决
(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.
23.(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.
24.(14分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.
(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小明一共统计了 个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是 ;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据中心对称图形和轴对称图形对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,又是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、D
【解析】
试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
考点:列方程
点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
3、A
【解析】
试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r﹣4)2,解得r=6.5
考点:垂径定理的应用.
4、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
5、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:135000=1.35×105
故选B.
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、D
【解析】
设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
解:∵,..又∵过点,交于点,∴,
∴,∴.故选D.
7、B
【解析】
利用条形统计图结合中位数和中位数的定义分别分析得出答案.
【详解】
①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),
∴×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;
④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,
故选B.
【点睛】
此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.
8、B
【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
【详解】
由,解得 或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).
【点睛】
本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
9、A
【解析】
分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
故选A.
点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
10、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
二、填空题(共7小题,每小题3分,满分21分)
11、143549
【解析】
根据题中密码规律确定所求即可.
【详解】
532=5×3×10000+5×2×100+5×(2+3)=151025
924=9×2×10000+9×4×100+9×(2+4)=183654,
863=8×6×10000+8×3×100+8×(3+6)=482472,
∴725=7×2×10000+7×5×100+7×(2+5)=143549.
故答案为:143549
【点睛】
本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.
12、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则<,故①是假命题;
②六边形的内角和是其外角和的2倍,根据②真命题;
③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
故答案为②④⑤
【点睛】
本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
13、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
14、x≤1且x≠﹣1
【解析】
试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.
考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.
15、2a+b.
【解析】
先去括号,再合并同类项即可得出答案.
【详解】
原式=2a-2b+3b
=2a+b.
故答案为:2a+b.
16、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
17、
【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.
【详解】
试题分析:正十二边形的每个外角的度数是:=30°,
则每一个内角的度数是:180°﹣30°=150°.
故答案为150°.
三、解答题(共7小题,满分69分)
18、(1)反比例函数表达式为,正比例函数表达式为;
(2),.
【解析】
试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
试题解析:()把代入反比例函数表达式,
得,解得,
∴反比例函数表达式为,
把代入正比例函数,
得,解得,
∴正比例函数表达式为.
()直线由直线向上平移个单位所得,
∴直线的表达式为,
由,解得或,
∵在第四象限,
∴,
连接,
∵,
,
,
.
19、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
【解析】
利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
【详解】
(1)在AB边上取点E,使AE=4,连接OA,OE;
(2)在BC边上取点F,使BF=3,连接OF;
(3)在CD边上取点G,使CG=2,连接OG;
(4)在DA边上取点H,使DH=1,连接OH.
由于AE=EB+BF=FC+CG=GD+DH=HA.
可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
【点睛】
此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
20、证明见解析.
【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
【详解】
证明:如图,连接,
∵,
∴,
∵,
∴,
∴,
∴,
∴
∵
∴,则,
∴,
∴,即,
在和中,
∵,
∴,
∴
∵是的切线,则,
∴,
∴,则,
∴是的切线.
【点睛】
本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
21、(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.
【解析】
表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案.
【详解】
解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得
解得.
答:最多可以做25只竖式箱子.
设制作竖式箱子a只,横式箱子b只,根据题意,
得,
解得:.
答:能制作竖式、横式两种无盖箱子分别为5只和30只.
设裁剪出B型板材m张,则可裁A型板材张,由题意得:
,
整理得,,.
竖式箱子不少于20只,
或22,这时,或,.
则能制作两种箱子共:或.
故答案为47或1.
【点睛】
本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.
22、(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9.
【解析】
(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;
(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;
(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.
【详解】
解:(1)如图1中,作△ABC的外接圆,连接OA,OC.
∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,
又∵∠AOC=2∠B,
∴∠AOC=90°,
∴AC=1,
∴OA=OC=1,
∴△ABC的外接圆的R为1.
(2)如图2中,作AH⊥BC于H.
∵AC=8,∠C=45°,
∴AH=AC•sin45°=8×=8,
∵∠BAC=10°,
∴当直径AD的值一定时,EF的值也确定,
根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,
如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.
∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,
∴EH=HF,∠OEF=∠OFE=30°,
∴EH=OF•cos30°=4•=1,
∴EF=2EH=2,
∴EF的最小值为2.
(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.
∵∠AE=AC,∠CAE=90°,
∴EC=AC,∠AEC=∠ACE=45°,
∴EC的值最小时,AC的值最小,
∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,
∴∠∠BEC+∠BCE=10°,
∴∠EBC=20°,
∴∠EBH=10°,
∴∠BEH=30°,
∴BH=x,EH=x,
∵CD+BC=2,CD=x,
∴BC=2﹣x
∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,
∵a=1>0,
∴当x=﹣=1时,EC的长最小,
此时EC=18,
∴AC=EC=9,
∴AC的最小值为9.
【点睛】
本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.
23、(1);(2)(,0)或
【解析】
(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
【详解】
解:(1)把A(2,n)代入直线解析式得:n=3,
∴A(2,3),
把A坐标代入y=,得k=6,
则双曲线解析式为y=.
(2)对于直线y=x+2,
令y=0,得到x=-4,即C(-4,0).
设P(x,0),可得PC=|x+4|.
∵△ACP面积为5,
∴|x+4|•3=5,即|x+4|=2,
解得:x=-或x=-,
则P坐标为或.
24、(1)①150;②作图见解析;③13.3%;(2).
【解析】
(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
【详解】
①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
②“好评”一共有150×60%=90(个),补全条形图如图1:
③图2中“差评”所占的百分比是:×100%=13.3%;
(2)列表如下:
好
中
差
好
好,好
好,中
好,差
中
中,好
中,中
中,差
差
差,好
差,中
差,差
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率是.
考点:扇形统计图;条形统计图;列表法与树状图法.
陕西省陕西师范大附属中学2022年中考数学模拟预测试卷含解析: 这是一份陕西省陕西师范大附属中学2022年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
北京市北京大附属中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份北京市北京大附属中学2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,实数的倒数是等内容,欢迎下载使用。
2022年重庆市北碚区西南大附属中学中考数学模拟预测试卷含解析: 这是一份2022年重庆市北碚区西南大附属中学中考数学模拟预测试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,计算tan30°的值等于,下列说法正确的是,计算﹣的结果为,下列图形中,是轴对称图形的是, “a是实数,”这一事件是等内容,欢迎下载使用。