安徽省滁州市南谯区2022年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.已知点,与点关于轴对称的点的坐标是( )
A. B. C. D.
2.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
3.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为( )
A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)
4.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
5.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )
A.6 B.5 C.4 D.
6.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是( )
A. B. C. D.
7.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )
A. B. C. D.
8.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
9.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )
A. B.a C. D.
10.下列运算正确的是( )
A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.
12.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.
13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.
14.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
15.关于x的一元二次方程有实数根,则a的取值范围是 __________.
16.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.
三、解答题(共8题,共72分)
17.(8分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
(1)说明△BEF是等腰三角形;
(2)求折痕EF的长.
18.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
19.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
20.(8分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
21.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
22.(10分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
23.(12分)阅读下面材料:
已知:如图,在正方形ABCD中,边AB=a1.
按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
操作步骤
作法
由操作步骤推断(仅选取部分结论)
第一步
在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
(i)△EAF≌△BAF(判定依据是①);
(ii)△CEF是等腰直角三角形;
(iii)用含a1的式子表示a2为②:
第二步
以CE为边构造第二个正方形CEFG;
第三步
在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
(iv)用只含a1的式子表示a3为③:
第四步
以CH为边构造第三个正方形CHIJ
这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
请解决以下问题:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).
24.已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
【详解】
解:点,与点关于轴对称的点的坐标是,
故选:C.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
2、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
3、B
【解析】
连接AC,如图所示.
∵四边形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等边三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
画出第5次、第6次、第7次翻转后的图形,如图所示.
由图可知:每翻转6次,图形向右平移2.
∵3=336×6+1,
∴点B1向右平移1322(即336×2)到点B3.
∵B1的坐标为(1.5, ),
∴B3的坐标为(1.5+1322,),
故选B.
点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.
4、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
5、D
【解析】
根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
【详解】
∵ED是BC的垂直平分线,
∴DB=DC,
∴∠C=∠DBC,
∵BD是△ABC的角平分线,
∴∠ABD=∠DBC,
∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
∴∠C=∠DBC=∠ABD=30°,
∴BD=2AD=6,
∴CD=6,
∴CE =3,
故选D.
【点睛】
本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
6、C
【解析】
先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.
【详解】
由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;
当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.
故选:C.
【点睛】
本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.
7、B
【解析】
主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.
8、B
【解析】
先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
【详解】
解:设直线AB的解析式为y=mx+n.
∵A(−2,0),B(0,1),
∴ ,
解得 ,
∴直线AB的解析式为y=2x+1.
将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
所以直线l的表达式是y=2x−2.
故选:B.
【点睛】
本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
9、A
【解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
∴MG=CG=×a=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
10、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=a5,不符合题意;
B、原式=x9,不符合题意;
C、原式=2x5,不符合题意;
D、原式=-a4,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、k>-且k≠1
【解析】
由题意知,k≠1,方程有两个不相等的实数根,
所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
又∵方程是一元二次方程,∴k≠1,
∴k>-1/4 且k≠1.
12、7
【解析】
设树的高度为m,由相似可得,解得,所以树的高度为7m
13、1.
【解析】
寻找规律:
上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;
右下是:从第二个图形开始,左下数字减上面数字差的平方:
(4-2)2,(9-3)2,(16-4)2,…
∴a=(36-6)2=1.
14、甲.
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.
【详解】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差.
故答案为:甲.
【点睛】
本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.
15、a≤1且a≠0
【解析】
∵关于x的一元二次方程有实数根,
∴ ,解得:,
∴a的取值范围为:且 .
点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;
(2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.
16、18或21
【解析】
当腰为8时,周长为8+8+5=21;
当腰为5时,周长为5+5+8=18.
故此三角形的周长为18或21.
三、解答题(共8题,共72分)
17、(1)见解析;(2).
【解析】
(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
【详解】
(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
在Rt△EMF中,由勾股定理得:EF==.
故答案为.
【点睛】
本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
18、技术改进后每天加工1个零件.
【解析】
分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
根据题意可得, 解得x=100,
经检验x=100是原方程的解,则改进后每天加工1.
答:技术改进后每天加工1个零件.
点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
19、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
【详解】
(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
解得:a=,b=1,c=﹣
∴抛物线解析式:y=x2+x﹣
(2)存在.
∵y=x2+x﹣=(x+1)2﹣2
∴P点坐标为(﹣1,﹣2)
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
设E(a,2),
∴a2+a﹣=2
解得a1=﹣1﹣2,a2=﹣1+2
∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
(3)∵点A(﹣3,0),点B(1,0),
∴AB=4
若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
∴AB∥PF,AB=PF=4
∵点P坐标(﹣1,﹣2)
∴点F坐标为(3,﹣2),(﹣5,﹣2)
∴平行四边形的面积=4×2=1
若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
∴AB与PF互相平分
设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
∴ ,
∴x=﹣1,y=2
∴点F(﹣1,2)
∴平行四边形的面积=×4×4=1
综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
【点睛】
本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
20、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
21、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
【解析】
解:(1)
(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
22、 (1) k的值为3,m的值为1;(2)0
分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
详解:(1)将A(3,m)代入y=x-2,
∴m=3-2=1,
∴A(3,1),
将A(3,1)代入y=,
∴k=3×1=3,
m的值为1.
(2)①当n=1时,P(1,1),
令y=1,代入y=x-2,
x-2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y=,
∴y=3,
∴N(1,3),
∴PN=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x-2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
23、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
【解析】
(1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
④同理可得an=(-1)n-1a1;
(2)根据题意画图即可.
【详解】
解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
理由是:如图1,在Rt△EAF和Rt△BAF中,
∵,
∴Rt△EAF≌Rt△BAF(HL);
②∵四边形ABCD是正方形,
∴AB=BC=a1,∠ABC=90°,
∴AC=a1,
∵AE=AB=a1,
∴CE=a2=a1﹣a1=(﹣1)a1;
③∵四边形CEFG是正方形,
∴△CEF是等腰直角三角形,
∴CF=CE=(-1)a1,
∵FH=EF=a2,
∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
④同理可得:an=(-1)n-1a1;
故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
(2)所画正方形CHIJ见右图.
24、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
2022年安徽省宣城市中学中考数学猜题卷含解析: 这是一份2022年安徽省宣城市中学中考数学猜题卷含解析,共18页。试卷主要包含了计算÷的结果是,下列运算正确的是等内容,欢迎下载使用。
2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析: 这是一份2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,已知,化简的结果为等内容,欢迎下载使用。
2022年安徽省滁州市中考猜题数学试卷含解析: 这是一份2022年安徽省滁州市中考猜题数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,已知点A,下列方程中有实数解的是等内容,欢迎下载使用。