|试卷下载
搜索
    上传资料 赚现金
    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析01
    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析02
    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析

    展开
    这是一份2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,已知,化简的结果为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )

    A.5 cm B.6 cm C.8 cm D.10 cm
    2.在平面直角坐标系中,函数的图象经过( )
    A.第一、二、三象限 B.第一、二、四象限
    C.第一、三、四象限 D.第二、三、四象限
    3.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    4.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
    A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
    5.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )

    A.4 个 B.3 个 C.2 个 D.1 个
    6.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
    A. B. C. D.
    7.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )

    A.3:2 B.9:4 C.2:3 D.4:9
    8.化简的结果为( )
    A.﹣1 B.1 C. D.
    9.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )

    A. B. C. D.
    10.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    11.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
    A. B. C. D.
    12.下列事件是必然事件的是(  )
    A.任意作一个平行四边形其对角线互相垂直
    B.任意作一个矩形其对角线相等
    C.任意作一个三角形其内角和为
    D.任意作一个菱形其对角线相等且互相垂直平分
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于的不等式组无解, 则的取值范围是 ________.
    14.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.

    15.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
    16.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    17.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.
    18.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    20.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
    x
    ﹣1
    0
    1
    ax2


    1
    ax2+bx+c
    7
    2

    (1)求抛物线y=ax2+bx+c的表达式
    (2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
    (3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.

    21.(6分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
    (1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
    (2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
    (3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.

    22.(8分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
    (1)求证:PC是⊙O的切线;
    (2)设OP=AC,求∠CPO的正弦值;
    (3)设AC=9,AB=15,求d+f的取值范围.

    23.(8分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
    (1)求日销售量y与时间t的函数关系式?
    (2)哪一天的日销售利润最大?最大利润是多少?
    (3)该养殖户有多少天日销售利润不低于2400元?

    24.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    25.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.

    (1)求证:△AEF≌△DEB;
    (2)证明四边形ADCF是菱形;
    (3)若AC=4,AB=5,求菱形ADCFD 的面积.
    26.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.

    27.(12分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
    表1:甲调查九年级30位同学植树情况
    每人植树棵数
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    表2:乙调查三个年级各10位同学植树情况
    每人植树棵数
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    12
    6
    根据以上材料回答下列问题:
    (1)关于于植树棵数,表1中的中位数是   棵;表2中的众数是   棵;
    (2)你认为同学   (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
    (3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    如图,连接AD.
    ∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
    ∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
    故选C.

    【点睛】
    本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    2、A
    【解析】
    【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.
    【详解】∵一次函数y=3x+1的k=3>0,b=1>0,
    ∴图象过第一、二、三象限,
    故选A.
    【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.
    3、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    4、A
    【解析】
    因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
    5、C
    【解析】
    由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
    【详解】
    解:∵四边形 ABCD 是正方形,
    ∴AB=BC=CD,
    ∵AG=GE,
    ∴BG=BE,
    ∴∠BEG=45°,
    ∴∠BEA>45°,
    ∵∠AEF=90°,
    ∴∠HEC<45°,
    ∴HC<EC,
    ∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
    ∵BG=BE,∠B=90°,
    ∴∠BGE=∠BEG=45°,
    ∴∠AGE=135°,
    ∴∠GAE+∠AEG=45°,
    ∵AE⊥EF,
    ∴∠AEF=90°,
    ∵∠BEG=45°,
    ∴∠AEG+∠FEC=45°,
    ∴∠GAE=∠FEC,
    在△GAE 和△CEF 中,
    ∵AG=CE,
    ∠GAE=∠CEF,
    AE=EF,
    ∴△GAE≌△CEF(SAS)),
    ∴②正确;
    ∴∠AGE=∠ECF=135°,
    ∴∠FCD=135°﹣90°=45°,
    ∴③正确;
    ∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
    ∴∠FEC<45°,
    ∴△GBE 和△ECH 不相似,
    ∴④错误;
    故选:C.
    【点睛】
    本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
    6、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:A.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    7、A
    【解析】
    试题解析:过点D作DE⊥AB于E,DF⊥AC于F.

    ∵AD为∠BAC的平分线,
    ∴DE=DF,又AB:AC=3:2,

    故选A.
    点睛:角平分线上的点到角两边的距离相等.
    8、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    9、A
    【解析】
    根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
    【详解】
    解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
    ∴二元一次方程组的解为
    故选A.
    【点睛】
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    10、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    11、D
    【解析】
    根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
    【详解】
    解:根据题意画图如下:

    共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
    则抽到的书签正好是相对应的书名和作者姓名的概率是=;
    故选D.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    12、B
    【解析】
    必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
    【详解】
    解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
    B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
    C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
    D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
    故选:B.
    【点睛】
    解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
    【详解】

    解①得:x>a+3,
    解②得:x<1.
    根据题意得:a+3≥1,
    解得:a≥-2.
    故答案是:a≥-2.
    【点睛】
    本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
    14、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    15、π(x+5)1=4πx1.
    【解析】
    根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
    【详解】
    解:设小圆的半径为x米,则大圆的半径为(x+5)米,
    根据题意得:π(x+5)1=4πx1,
    故答案为π(x+5)1=4πx1.
    【点睛】
    本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
    16、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    17、(a+1)1.
    【解析】
    原式提取公因式,计算即可得到结果.
    【详解】
    原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
    =(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
    =(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
    =…,
    =(a+1)1.
    故答案是:(a+1)1.
    【点睛】
    考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
    18、4.027
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:4 0270 0000用科学记数法表示是4.027×1.
    故答案为4.027×1.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    20、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
    【解析】
    (1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
    (2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
    (1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
    【详解】
    (1)当x=1时,y=ax2=1,
    解得:a=1;
    将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
    ,解得:,
    ∴抛物线的表达式为y=x2﹣4x+2;
    (2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
    ∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
    ∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
    ∴点B到抛物线的距离为1,
    ∴点B的横坐标为1+2=5,
    ∴点B的坐标为(5,7).
    (1)∠BAD和∠DCO互补,理由如下:
    当x=0时,y=x2﹣4x+2=2,
    ∴点A的坐标为(0,2),
    ∵y=x2﹣4x+2=(x﹣2)2﹣2,
    ∴点D的坐标为(2,﹣2).
    过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
    设直线BD的表达式为y=mx+n(m≠0),
    将B(5,7)、D(2,﹣2)代入y=mx+n,
    ,解得:,
    ∴直线BD的表达式为y=1x﹣2.
    当y=2时,有1x﹣2=2,
    解得:x=,
    ∴点N的坐标为(,2).
    ∵A(0,2),B(5,7),D(2,﹣2),
    ∴AB=5,BD=1,BN=,
    ∴==.
    又∵∠ABD=∠NBA,
    ∴△ABD∽△NBA,
    ∴∠ANB=∠DAB.
    ∵∠ANB+∠AND=120°,
    ∴∠DAB+∠DCO=120°,
    ∴∠BAD和∠DCO互补.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
    21、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
    【解析】
    (1)直接利用线段AB的“等长点”的条件判断;
    (2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
    (3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
    【详解】
    (1)∵A(0,3),B(,0),
    ∴AB=2,
    ∵点C1(﹣2,3+2),
    ∴AC1==2,
    ∴AC1=AB,
    ∴C1是线段AB的“等长点”,
    ∵点C2(0,﹣2),
    ∴AC2=5,BC2==,
    ∴AC2≠AB,BC2≠AB,
    ∴C2不是线段AB的“等长点”,
    ∵点C3(3+,﹣),
    ∴BC3==2,
    ∴BC3=AB,
    ∴C3是线段AB的“等长点”;
    故答案为C1,C3;
    (2)如图1,

    在Rt△AOB中,OA=3,OB=,
    ∴AB=2,tan∠OAB==,
    ∴∠OAB=30°,
    当点D在y轴左侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠DAB﹣∠BAO=30°,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB,
    ∴D(﹣,0),
    ∴m=,n=0,
    当点D在y轴右侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠BAO+∠DAB=90°,
    ∴n=3,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB=2,
    ∴m=2;
    ∴D(,3)
    (3)如图2,

    ∵直线y=kx+3k=k(x+3),
    ∴直线y=kx+3k恒过一点P(﹣3,0),
    ∴在Rt△AOP中,OA=3,OP=3,
    ∴∠APO=30°,
    ∴∠PAO=60°,
    ∴∠BAP=90°,
    当PF与⊙B相切时交y轴于F,
    ∴PA切⊙B于A,
    ∴点F就是直线y=kx+3k与⊙B的切点,
    ∴F(0,﹣3),
    ∴3k=﹣3,
    ∴k=﹣,
    当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
    ∴∠AEG=∠OPG=90°,
    ∴△AEG∽△POG,
    ∴,
    ∴=,解得:k=或k=(舍去)
    ∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
    ∴﹣≤k≤,
    【点睛】
    此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.
    22、(1)详见解析;(2);(3)
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
    (2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
    (3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
    【详解】
    (1)连接OC,

    ∵OA=OC,
    ∴∠A=∠OCA,
    ∵AC∥OP,
    ∴∠A=∠BOP,∠ACO=∠COP,
    ∴∠COP=∠BOP,
    ∵PB是⊙O的切线,AB是⊙O的直径,
    ∴∠OBP=90°,
    在△POC与△POB中,

    ∴△COP≌△BOP,
    ∴∠OCP=∠OBP=90°,
    ∴PC是⊙O的切线;
    (2)过O作OD⊥AC于D,
    ∴∠ODC=∠OCP=90°,CD=AC,
    ∵∠DCO=∠COP,
    ∴△ODC∽△PCO,
    ∴,
    ∴CD•OP=OC2,
    ∵OP=AC,
    ∴AC=OP,
    ∴CD=OP,
    ∴OP•OP=OC2
    ∴,
    ∴sin∠CPO=;
    (3)连接BC,
    ∵AB是⊙O的直径,
    ∴AC⊥BC,
    ∵AC=9,AB=1,
    ∴BC==12,
    当CM⊥AB时,
    d=AM,f=BM,
    ∴d+f=AM+BM=1,
    当M与B重合时,
    d=9,f=0,
    ∴d+f=9,
    ∴d+f的取值范围是:9≤d+f≤1.
    【点睛】
    本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
    23、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
    【解析】
    (1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
    (2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
    (3)求出w=2400时t的值,结合函数图象即可得出答案;
    【详解】
    (1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
    ,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
    (2)设日销售利润为w,则w=(p﹣6)y,
    当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
    ∴当t=30时,w最大=2450;

    ∴第30天的日销售利润最大,最大利润为2450元.
    (3)由(2)得:当1≤t≤80时,
    w=﹣(t﹣30)2+2450,
    令w=2400,即﹣ (t﹣30)2+2450=2400,
    解得:t1=20、t2=40,
    ∴t的取值范围是20≤t≤40,
    ∴共有21天符合条件.
    【点睛】
    本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
    24、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    25、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    26、证明见解析
    【解析】
    试题分析:证明三角形△ABC△DEF,可得=.
    试题解析:
    证明:∵=,
    ∴BC=EF,
    ∵⊥,⊥,
    ∴∠B=∠E=90°,AC=DF,
    ∴△ABC△DEF,
    ∴AB=DE.
    27、(1)9,9;(2)乙;(3)1680棵;
    【解析】
    (1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
    故答案为:9,9;
    (2)乙同学所抽取的样本能更好反映此次植树活动情况;
    故答案为:乙;
    (3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
    答:本次活动200位同学一共植树1680棵.
    【点睛】
    本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.

    相关试卷

    2023年安徽省滁州市全椒县中考二模数学试卷: 这是一份2023年安徽省滁州市全椒县中考二模数学试卷,共9页。试卷主要包含了代数式的估值在等内容,欢迎下载使用。

    2022年广东韶关曲江重点中学中考猜题数学试卷含解析: 这是一份2022年广东韶关曲江重点中学中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,a的倒数是3,则a的值是等内容,欢迎下载使用。

    2022年安徽省滁州市中考猜题数学试卷含解析: 这是一份2022年安徽省滁州市中考猜题数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,已知点A,下列方程中有实数解的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map