|试卷下载
搜索
    上传资料 赚现金
    2022届安徽省滁州市来安县中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2022届安徽省滁州市来安县中考猜题数学试卷含解析01
    2022届安徽省滁州市来安县中考猜题数学试卷含解析02
    2022届安徽省滁州市来安县中考猜题数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省滁州市来安县中考猜题数学试卷含解析

    展开
    这是一份2022届安徽省滁州市来安县中考猜题数学试卷含解析,共23页。试卷主要包含了点A,已知二次函数,函数的自变量x的取值范围是,方程=的解为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于(  )

    A.75° B.90° C.105° D.115°
    2.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(   )
    A.                      B.                      C.                      D.
    3.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是(  )
    A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
    4.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )

    A.5 B.4 C.7 D.5
    5.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是(  )
    A.关于x轴对称 B.关于y轴对称
    C.绕原点逆时针旋转 D.绕原点顺时针旋转
    6.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是(  )

    A.① B.③ C.②或④ D.①或③
    7.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
    A.1或5 B.或3 C.或1 D.或5
    8.函数的自变量x的取值范围是( )
    A.x>1 B.x<1 C.x≤1 D.x≥1
    9.方程=的解为( )
    A.x=3 B.x=4 C.x=5 D.x=﹣5
    10.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )

    A.3cm B.4cm C.5cm D.6cm
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
    12.若代数式在实数范围内有意义,则x的取值范围是_______.
    13.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.

    14.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.

    15.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.

    16.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.

    17.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
    19.(5分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
    求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
    20.(8分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:
    某市自来水销售价格表
    类别
    月用水量
    (立方米)
    供水价格
    (元/立方米)
    污水处理费
    (元/立方米)
    居民生活用水
    阶梯一
    0~18(含18)
    1.90
    1.00
    阶梯二
    18~25(含25)
    2.85
    阶梯三
    25以上
    5.70
    (注:居民生活用水水价=供水价格+污水处理费)
    (1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.
    (2)4月份小明家用水量为20立方米,应付水费为:
    18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)
    预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.
    (3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议
    21.(10分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).

    22.(10分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.

    23.(12分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    24.(14分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
    (1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
    (2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
    (3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
    详解:∵AB∥EF,
    ∴∠BDE=∠E=45°,
    又∵∠A=30°,
    ∴∠B=60°,
    ∴∠1=∠BDE+∠B=45°+60°=105°,
    故选C.
    点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    2、B
    【解析】
    分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
    详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
    ∴b>0,
    ∵交点横坐标为1,
    ∴a+b+c=b,
    ∴a+c=0,
    ∴ac<0,
    ∴一次函数y=bx+ac的图象经过第一、三、四象限.
    故选B.
    点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
    3、A
    【解析】
    根据题意可知x=-1,
    平均数=(-6-1-1-1+2+1)÷6=-1,
    ∵数据-1出现两次最多,
    ∴众数为-1,
    极差=1-(-6)=2,
    方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
    故选A.
    4、C
    【解析】
    连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
    【详解】
    解:连接AE,

    ∵AC=3,cos∠CAB=,
    ∴AB=3AC=9,
    由勾股定理得,BC==6,
    ∠ACB=90°,点D为AB的中点,
    ∴CD=AB=,
    S△ABC=×3×6=9,
    ∵点D为AB的中点,
    ∴S△ACD=S△ABC=,
    由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
    则×CD×AE=9,
    解得,AE=4,
    ∴AF=2,
    由勾股定理得,DF==,
    ∵AF=FE,AD=DB,
    ∴BE=2DF=7,
    故选C.
    【点睛】
    本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    5、C
    【解析】
    分析:根据旋转的定义得到即可.
    详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
    所以点A绕原点逆时针旋转90°得到点B,
    故选C.
    点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
    6、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
    ②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
    故答案为①或③.
    故选D.
    【点睛】
    本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    7、D
    【解析】
    由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.
    【详解】
    解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,
    ∴①若,当时,y取得最小值4,
    可得:4,
    解得或(舍去);
    ②若-1<h<3时,当x=h时,y取得最小值为0,不是4,
    ∴此种情况不符合题意,舍去;
    ③若-1≤x≤3<h,当x=3时,y取得最小值4,
    可得:,
    解得:h=5或h=1(舍).
    综上所述,h的值为-3或5,
    故选:D.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
    8、C
    【解析】
    试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
    试题解析:根据题意得:1-x≥0,
    解得:x≤1.
    故选C.
    考点:函数自变量的取值范围.
    9、C
    【解析】
    方程两边同乘(x-1)(x+3),得
    x+3-2(x-1)=0,
    解得:x=5,
    检验:当x=5时,(x-1)(x+3)≠0,
    所以x=5是原方程的解,
    故选C.
    10、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
    【详解】
    ∵PA,PB是⊙O是切线,
    ∴PA=PB.
    又∵∠P=46°,
    ∴∠PAB=∠PBA=.
    又∵PA是⊙O是切线,AO为半径,
    ∴OA⊥AP.
    ∴∠OAP=90°.
    ∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
    故答案为:1
    【点睛】
    此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
    12、
    【解析】
    先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    解:∵在实数范围内有意义,
    ∴x-1≥2,
    解得x≥1.
    故答案为x≥1.
    本题考查的是二次根式有意义的条件,即被开方数大于等于2.
    13、80
    【解析】
    【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
    【详解】由图可知AQI在0~50的频数为10,
    所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
    故答案为80
    【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
    14、(15﹣5)
    【解析】
    先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
    【详解】
    ∵P为AB的黄金分割点(AP>PB),
    ∴AP=AB=×10=5﹣5,
    ∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
    故答案为(15﹣5).
    【点睛】
    本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
    15、或.
    【解析】
    由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
    (1) 当∠ONM=90°时,则DN⊥BC.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵在Rt△ABC中,∠A=90°,AB=AC,
    ∴∠C=45°,
    ∵BC=20,
    ∴在Rt△ABC中,,
    ∵DE是△ABC的中位线,
    ∴,
    ∴在Rt△CFE中,,.
    ∵BM=3,BC=20,FC=5,
    ∴MF=BC-BM-FC=20-3-5=12.
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∵DE是△ABC的中位线,BC=20,
    ∴,DE∥BC,
    ∴∠DEM=∠EMF,即∠DEO=∠EMF,
    ∴,
    ∴在Rt△ODE中,.
    (2) 当∠MON=90°时,则DN⊥ME.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∴在Rt△MFE中,,
    ∵∠DEO=∠EMF,
    ∴,
    ∵DE=10,
    ∴在Rt△DOE中,.
    综上所述,DO的长是或.
    故本题应填写:或.
    点睛:
    在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.
    16、1
    【解析】
    ∵AM=AC,BN=BC,∴AB是△ABC的中位线,
    ∴AB=MN=1m,
    故答案为1.
    17、①②④
    【解析】
    由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.
    【详解】
    ∵当ABCD的面积最大时,AB⊥BC,
    ∴ABCD是矩形,
    ∴∠A=∠C=90°,AC=BD,故③错误,④正确;
    ∴∠A+∠C=180°;故②正确;
    ∴AC==1,故①正确.
    故答案为:①②④.
    【点睛】
    此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
    19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
    【解析】
    (1)可用待定系数法来确定y与x之间的函数关系式;
    (2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
    (3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
    【详解】
    (1)由题意得: .
    故y与x之间的函数关系式为:y=-10x+700,
    (2)由题意,得
    -10x+700≥240,
    解得x≤46,
    设利润为w=(x-30)•y=(x-30)(-10x+700),

    w=-10x2+1000x-21000=-10(x-50)2+4000,
    ∵-10<0,
    ∴x<50时,w随x的增大而增大,
    ∴x=46时,w大=-10(46-50)2+4000=3840,
    答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
    (3)w-150=-10x2+1000x-21000-150=3600,
    -10(x-50)2=-250,
    x-50=±5,
    x1=55,x2=45,
    如图所示,由图象得:
    当45≤x≤55时,捐款后每天剩余利润不低于3600元.
    【点睛】
    此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
    20、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
    【解析】
    试题分析:
    (1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
    (2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
    (3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.
    试题解析:
    (1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
    (2)由题意可得:
    小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
    (3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:
    18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,
    ∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
    21、(1);
    (2)
    【解析】
    (1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;
    (2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.
    【详解】
    解:(1)连接AC,如图所示:

    ∵AB=BC=1,∠B=90°
    ∴AC=,
    又∵AD=1,DC=,
    ∴ AD2+AC2=3 CD2=()2=3
    即CD2=AD2+AC2
    ∴∠DAC=90°
    ∵AB=BC=1
    ∴∠BAC=∠BCA=45°
    ∴∠BAD=135°;
    (2)由(1)可知△ABC和△ADC是Rt△,
    ∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××= .
    【点睛】
    考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    22、见解析
    【解析】
    试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.             
    证明:∵AB∥EF,
    ∴∠B=∠F.
    又∵BD=CF,
    ∴BC=FD.
    在△ABC与△EFD中,
    ∴△ABC≌△EFD(AAS),
    ∴AB=EF.
    23、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    24、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.
    【解析】
    (2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;
    (2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;
    (3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.
    【详解】
    (2)在图2中,连接B′M,则∠B′MA=90°.

    在Rt△ABC中,AB=4,BC=3,
    ∴AC=2.
    ∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
    ∴△ABC∽△AMB′,
    ∴=,即=,
    ∴AM=;
    (2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,

    ∵半圆与直线CD相切,
    ∴ON⊥DN,
    ∴四边形DGON为矩形,
    ∴DG=ON=2,
    ∴AG=AD-DG=2.
    在Rt△AGO中,∠AGO=90°,AO=2,AG=2,
    ∴∠AOG=30°,∠OAG=60°.
    又∵OA=OP,
    ∴△AOP为等边三角形,
    ∴==π.
    (3)由(2)可知:△AOP为等边三角形,
    ∴DN=GO=OA=,
    ∴CN=CD+DN=4+.
    当点B′在直线CD上时,如图4所示,

    在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,
    ∴B′D==,
    ∴CB′=4-.
    ∵AB′为直径,
    ∴∠ADB′=90°,
    ∴当点B′在点D右边时,半圆交直线CD于点D、B′.
    ∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.
    【点睛】
    本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.

    相关试卷

    2023年安徽省滁州市来安县中考数学一模试卷(含解析): 这是一份2023年安徽省滁州市来安县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省滁州市南谯区2022年中考数学猜题卷含解析: 这是一份安徽省滁州市南谯区2022年中考数学猜题卷含解析,共22页。试卷主要包含了把直线l,下列运算正确的是等内容,欢迎下载使用。

    2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析: 这是一份2022年安徽省滁州市全椒县重点中学中考猜题数学试卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,已知,化简的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map