终身会员
搜索
    上传资料 赚现金

    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析

    立即下载
    加入资料篮
    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析第1页
    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析第2页
    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析

    展开

    这是一份2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,﹣22×3的结果是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列运算中,正确的是(  )
    A.(a3)2=a5 B.(﹣x)2÷x=﹣x
    C.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x6
    2.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是(  )
    A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数
    3.已知,代数式的值为( )
    A.-11 B.-1 C.1 D.11
    4.计算-5x2-3x2的结果是( )
    A.2x2 B.3x2 C.-8x2 D.8x2
    5.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为(  )

    A. B. C. D.1
    7.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是(  )

    A.8 B.10 C.21 D.22
    8.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为(  )
    A.0.76×104 B.7.6×103 C.7.6×104 D.76×102
    9.﹣22×3的结果是(  )
    A.﹣5 B.﹣12 C.﹣6 D.12
    10.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )

    A. B. C. D.
    11.下列说法正确的是( )
    A.负数没有倒数 B.﹣1的倒数是﹣1
    C.任何有理数都有倒数 D.正数的倒数比自身小
    12.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.不等式的解集是________________
    14.已知二次函数,与的部分对应值如下表所示:


    -1
    0
    1
    2
    3
    4



    6
    1
    -2
    -3
    -2
    m

    下面有四个论断:
    ①抛物线的顶点为;
    ②;
    ③关于的方程的解为;
    ④.
    其中,正确的有___________________.
    15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.

    16.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)

    17.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.

    18.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.

    20.(6分)观察下列各个等式的规律:
    第一个等式:=1,第二个等式: =2,第三个等式:=3…
    请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
    21.(6分)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,求跨度AB的长(精确到0.01米).

    22.(8分)(操作发现)
    (1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
    ①求∠EAF的度数;
    ②DE与EF相等吗?请说明理由;
    (类比探究)
    (2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
    ①∠EAF的度数;
    ②线段AE,ED,DB之间的数量关系.

    23.(8分)请根据图中提供的信息,回答下列问题:
    一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
    24.(10分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.
    (1)求A,B两点的坐标及直线AC的函数表达式;
    (1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
    (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
    (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

    25.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
    (1)求证:EF是⊙O的切线;
    (2)若∠F=30°,BF=3,求弧AD的长.

    26.(12分)如图,△ABC中,CD是边AB上的高,且.
    求证:△ACD∽△CBD;求∠ACB的大小.
    27.(12分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
    (1)求点C和点A的坐标.
    (2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
    ①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
    ②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
    ③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
    【详解】
    ∵(a3)2=a6,
    ∴选项A不符合题意;
    ∵(-x)2÷x=x,
    ∴选项B不符合题意;
    ∵a3(-a)2=a5,
    ∴选项C不符合题意;
    ∵(-2x2)3=-8x6,
    ∴选项D符合题意.
    故选D.
    【点睛】
    此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
    2、C
    【解析】
    利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.
    【详解】
    选项A、标号是2是随机事件;
    选项B、该卡标号小于6是必然事件;
    选项C、标号为6是不可能事件;
    选项D、该卡标号是偶数是随机事件;
    故选C.
    【点睛】
    本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.
    3、D
    【解析】
    根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.
    【详解】
    解:由题意可知:,
    原式



    故选:D.
    【点睛】
    此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值
    4、C
    【解析】
    利用合并同类项法则直接合并得出即可.
    【详解】
    解:
    故选C.
    【点睛】
    此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.
    5、A
    【解析】
    ∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,
    ∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.
    ∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:
    ①当,时,函数的图象经过第一、二、三象限;
    ②当,时,函数的图象经过第一、三、四象限;
    ③当,时,函数的图象经过第一、二、四象限;
    ④当,时,函数的图象经过第二、三、四象限.
    因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.
    6、A
    【解析】
    首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.
    【详解】
    取AB的中点M,连接OM,

    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,OB=OD,
    ∴OM∥AD∥BC,OM=AD=×3=,
    ∴△EFB∽△EOM,
    ∴,
    ∵AB=5,BE=AB,
    ∴BE=2,BM=,
    ∴EM=+2=,
    ∴,
    ∴BF=,
    故选A.
    【点睛】
    此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.
    7、D
    【解析】
    分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
    详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
    故选D.
    点睛:考查中位数的定义,看懂条形统计图是解题的关键.
    8、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:7600=7.6×103,
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、B
    【解析】
    先算乘方,再算乘法即可.
    【详解】
    解:﹣22×3=﹣4×3=﹣1.
    故选:B.
    【点睛】
    本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.
    10、D
    【解析】
    过B点作BD⊥AC,如图,
    由勾股定理得,AB=,AD=,
    cosA===,
    故选D.

    11、B
    【解析】
    根据倒数的定义解答即可.
    【详解】
    A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
    【点睛】
    本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
    12、D
    【解析】
    分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
    【详解】
    阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
    即:a2﹣b2=(a+b)(a﹣b).
    所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
    故选:D.
    【点睛】
    考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    首先去分母进而解出不等式即可.
    【详解】
    去分母得,1-2x>15
    移项得,-2x>15-1
    合并同类项得,-2x>14
    系数化为1,得x<-7.
    故答案为x<-7.
    【点睛】
    此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
    14、①③.
    【解析】
    根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
    【详解】
    由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
    该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
    ①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
    ②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
    ③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
    ④m=﹣3,结论错误,
    其中,正确的有. ①③
    故答案为:①③
    【点睛】
    本题考查了二次函数的图像,结合图表信息是解题的关键.
    15、1
    【解析】
    先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.
    【详解】
    解:∵∠A+∠C=180°,
    ∴AB∥CD,
    ∴∠APM=∠CQM=118°,
    ∴∠CQN=180°-∠CQM=1°,
    故答案为:1.
    【点睛】
    本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
    16、πcm1.
    【解析】
    求出AD,先分别求出两个扇形的面积,再求出答案即可.
    【详解】
    解:∵AB长为15cm,贴纸部分的宽BD为15cm,
    ∴AD=10cm,
    ∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=(cm1),
    故答案为πcm1.
    【点睛】
    本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.
    17、45
    【解析】
    由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.
    【详解】
    ∵正方形ABCD,AF,AB,AD为圆A半径,
    ∴AB=AF=AD,∠ABD=∠ADB=45°,
    ∴∠ABF=∠AFB,∠AFD=∠ADF,
    ∵四边形ABFD内角和为360°,∠BAD=90°,
    ∴∠ABF+∠AFB+∠AFD+∠ADF=270°,
    ∴∠ABF+∠ADF=135°,
    ∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,
    ∴∠1+∠2=135°−90°=45°,
    ∵∠EFD为△DEF的外角,
    ∴∠EFD=∠1+∠2=45°.
    故答案为45
    【点睛】
    此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.
    18、π
    【解析】
    ∵∠C=30°,
    ∴∠AOB=60°,
    ∴.即的长为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
    【详解】
    证明:如图,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,


    ∴,则,
    ∴,
    ∴,即,
    在和中,
    ∵,
    ∴,

    ∵是的切线,则,
    ∴,
    ∴,则,
    ∴是的切线.

    【点睛】
    本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
    20、(1)=4;(2)=n.
    【解析】
    试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
    (2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
    试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
    (2)第n个等式是:=n.证明如下:
    ∵= = =n
    ∴第n个等式是:=n.
    点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
    21、AB≈3.93m.
    【解析】
    想求得AB长,由等腰三角形的三线合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函数可以求出.
    【详解】
    ∵AC=BC,D是AB的中点,
    ∴CD⊥AB,
    又∵CD=1米,∠A=27°,
    ∴AD=CD÷tan27°≈1.96,
    ∴AB=2AD,
    ∴AB≈3.93m.
    【点睛】
    本题考查了三角函数,直角三角形,等腰三角形等知识,关键利用了正切函数的定义求出AD,然后就可以求出AB.
    22、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
    【解析】
    试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
    (1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
    试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
    在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
    ②DE=EF.理由如下:
    ∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
    (1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
    ②AE1+DB1=DE1,理由如下:
    ∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
    23、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
    【解析】
    (1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
    (2)计算出两商场得费用,比较即可得到结果.
    【详解】
    解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
    根据题意得:3x+4(48﹣x)=152,
    解得:x=40,
    则一个水瓶40元,一个水杯是8元;
    (2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
    乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
    则∵n>10,且n为整数,
    ∴160+6.4n﹣(120+8n)=40﹣1.6n
    讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
    ∴选择乙商场购买更合算.
    当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
    ∴选择甲商场购买更合算.
    【点睛】
    此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
    24、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).
    【解析】
    (1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;
    (1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;
    (3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;
    (4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.
    【详解】
    解:(1)令y=0,解得或x1=3,
    ∴A(﹣1,0),B(3,0);
    将C点的横坐标x=1代入y=x1﹣1x﹣3得
    ∴C(1,-3),
    ∴直线AC的函数解析式是
    (1)设P点的横坐标为x(﹣1≤x≤1),
    则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),
    ∵P点在E点的上方,
    ∴当时,PE的最大值
    △ACE的面积最大值
    (3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),
    连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,
    最小值
    求得M(1,﹣1),
    (4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,

    于是可得F1(1,0),F1(﹣3,0),
    如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,

    再根据|HA|=|CF|,
    求出
    综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.
    【点睛】
    属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.
    25、(1)见解析;(2)2π.
    【解析】
    证明:(1)连接OD,

    ∵AB是直径,
    ∴∠ADB=90°,即AD⊥BC,
    ∵AB=AC,
    ∴AD平分∠BAC,
    ∴∠OAD=∠CAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥EF,
    ∵OD过O,
    ∴EF是⊙O的切线.
    (2)∵OD⊥DF,
    ∴∠ODF=90°,
    ∵∠F=30°,
    ∴OF=2OD,即OB+3=2OD,
    而OB=OD,
    ∴OD=3,
    ∵∠AOD=90°+∠F=90°+30°=120°,
    ∴的长度=.
    【点睛】
    本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
    26、(1)证明见试题解析;(2)90°.
    【解析】
    试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;
    (2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.
    试题解析:(1)∵CD是边AB上的高,
    ∴∠ADC=∠CDB=90°,
    ∵.
    ∴△ACD∽△CBD;
    (2)∵△ACD∽△CBD,
    ∴∠A=∠BCD,
    在△ACD中,∠ADC=90°,
    ∴∠A+∠ACD=90°,
    ∴∠BCD+∠ACD=90°,
    即∠ACB=90°.
    考点:相似三角形的判定与性质.
    27、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
    【解析】
    (1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
    (2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
    【详解】
    (1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
    ∴A(1,0),B(3,0),
    ∴抛物线的对称轴为x=2,
    将x=2代入抛物线的解析式得:y=-1,
    ∴C(2,-1);
    (2)①将x=0代入抛物线的解析式得:y=3,
    ∴抛物线与y轴交点坐标为(0,3),
    如图所示:作直线y=3,

    由图象可知:直线y=3与“L双抛图形”有3个交点,
    故答案为3;
    ②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
    由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
    故答案为0<t<1.
    ③如图2所示:

    ∵PQ∥AC且PQ=AC,
    ∴四边形ACQP为平行四边形,
    又∵点C的纵坐标为-1,
    ∴点P的纵坐标为1,
    将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
    ∴点P的坐标为(+2,1)或(-+2,1),
    当点P(-1,0)时,也满足条件.
    综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.

    相关试卷

    浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析:

    这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    浙江地区重点达标名校2021-2022学年中考数学最后一模试卷含解析:

    这是一份浙江地区重点达标名校2021-2022学年中考数学最后一模试卷含解析,共25页。试卷主要包含了下列命题是真命题的是,若一个正比例函数的图象经过A,正比例函数y=等内容,欢迎下载使用。

    2022年浙江宁波江北区中考数学考前最后一卷含解析:

    这是一份2022年浙江宁波江北区中考数学考前最后一卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map