2022届浙江省嘉兴市桐乡重点名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )
A.两点之间的所有连线中,线段最短
B.经过两点有一条直线,并且只有一条直线
C.直线外一点与直线上各点连接的所有线段中,垂线段最短
D.经过一点有且只有一条直线与已知直线垂直
2.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.
其中正确的个数为
A.1 B.2 C.3 D.4
3.的值是
A.±3 B.3 C.9 D.81
4.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A. B. C. D.
5.下列实数中,最小的数是( )
A. B. C.0 D.
6.若关于x的分式方程的解为非负数,则a的取值范围是( )
A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
7.方程的解是( ).
A. B. C. D.
8.已知am=2,an=3,则a3m+2n的值是( )
A.24 B.36 C.72 D.6
9.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
10.若代数式有意义,则实数x的取值范围是( )
A.x=0 B.x=3 C.x≠0 D.x≠3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:=_____.
12.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
13.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.
14.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
15.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.
16. “若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.
三、解答题(共8题,共72分)
17.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
18.(8分)实践体验:
(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;
(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;
问题解决:
(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.
19.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.
根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
20.(8分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,
(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
(2)连接EF,若BD=4,求EF的长.
21.(8分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
| 平均分(分) | 中位数(分) | 众数(分) | 方差(分2) |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.
22.(10分)解方程:1+
23.(12分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.
24.如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
本题要根据过平面上的两点有且只有一条直线的性质解答.
【详解】
根据两点确定一条直线.
故选:B.
【点睛】
本题考查了“两点确定一条直线”的公理,难度适中.
2、B
【解析】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
当x=1时,y=1+b+c=1,故②错误。
∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。
综上所述,正确的结论有③④两个,故选B。
3、C
【解析】
试题解析:∵
∴的值是3
故选C.
4、A
【解析】
解:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6,
∵BG⊥AE,垂足为G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
∴AG==2,
∴AE=2AG=4;
∴S△ABE=AE•BG=.
∵BE=6,BC=AD=9,
∴CE=BC﹣BE=9﹣6=3,
∴BE:CE=6:3=2:1,
∵AB∥FC,
∴△ABE∽△FCE,
∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
故选A.
【点睛】
本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
5、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵<-2<0<,
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
6、C
【解析】
试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
解:去分母得:2(2x﹣a)=x﹣2,
解得:x=,
由题意得:≥1且≠2,
解得:a≥1且a≠4,
故选C.
点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
7、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
8、C
【解析】
试题解析:∵am=2,an=3,
∴a3m+2n
=a3m•a2n
=(am)3•(an)2
=23×32
=8×9
=1.
故选C.
9、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
10、D
【解析】
分析:根据分式有意义的条件进行求解即可.
详解:由题意得,x﹣3≠0,
解得,x≠3,
故选D.
点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
先算除法,再算减法,注意把分式的分子分母分解因式
【详解】
原式=
=
=
【点睛】
此题考查分式的混合运算,掌握运算法则是解题关键
12、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
13、+1
【解析】
根据对称性可知:GJ∥BH,GB∥JH,
∴四边形JHBG是平行四边形,
∴JH=BG,
同理可证:四边形CDFB是平行四边形,
∴CD=FB,
∴FG+JH+CD=FG+BG+FB=2BF,
设FG=x,
∵∠AFG=∠AFB,∠FAG=∠ABF=36°,
∴△AFG∽△BFA,
∴AF2=FG•BF,
∵AF=AG=BG=1,
∴x(x+1)=1,
∴x=(负根已经舍弃),
∴BF=+1=,
∴FG+JH+CD=+1.
故答案为+1.
14、1
【解析】
根据函数值相等两点关于对称轴对称,可得答案.
【详解】
由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
15、减小
【解析】
根据反比例函数的性质,依据比例系数k的符号即可确定.
【详解】
∵k=2>0,
∴y随x的增大而减小.
故答案是:减小.
【点睛】
本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
16、答案不唯一,如1,2,3;
【解析】
分析:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,举例即可,本题答案不唯一
详解:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,
则若a<b<c,则a+b≥c”是真命题,
可设a,b,c的值依次1,2,3,(答案不唯一),
故答案为1,2,3.
点睛:本题考查了命题的真假,举例说明即可,
三、解答题(共8题,共72分)
17、10,1.
【解析】
试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
18、(1)见解析;(2)PQmin=7,PQmax=13;(3) Smin=,Smax=18.
【解析】
(1)根据全等三角形判定定理求解即可.
(2)以E为圆心,以5为半径画圆,①当E、P、Q三点共线时最PQ最小,②当P点在位置时PQ最大,分类讨论即可求解.
(3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.
【详解】
(1)当P为AD中点时,
,
△BCP为等腰三角形.
(2)以E为圆心,以5为半径画圆
① 当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.
② 当P点在位置时PQ最大,PQ的最大值是
(3)以E为圆心,以2为半径画圆.
当点p为位置时,四边形PADC面积最大.
当点p为位置时,四边形PADC最小=四边形+三角形=.
【点睛】
本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.
19、(1)5;(2)36%;(3).
【解析】
试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
(2)根据:小组频数= ,进行求解即可;
(3)利用列举法求概率即可.
试题解析:
(1)E类:50-2-3-22-18=5(人),故答案为:5;
补图如下:
(2)D类:1850×100%=36%,故答案为:36%;
(3)设这5人为
有以下10种情况:
其中,两人都在 的概率是: .
20、 (1)见解析;(1)1
【解析】
(1)根据角平分线的作图可得;
(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.
【详解】
(1)如图,射线CF即为所求;
(1)∵∠CAD=∠CDA,
∴AC=DC,即△CAD为等腰三角形;
又CF是顶角∠ACD的平分线,
∴CF是底边AD的中线,即F为AD的中点,
∵E是AB的中点,
∴EF为△ABD的中位线,
∴EF=BD=1.
【点睛】
本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.
21、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
【解析】
分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
【详解】
详解: (1)初中5名选手的平均分,众数b=85,
高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
故初中部决赛成绩较好;
(3)=70,
∵,
∴初中代表队选手成绩比较稳定.
【点睛】
本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.
22、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
23、(1)证明见解析;(2)BP=1.
【解析】
分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;
(2)证明△AOP∽△ABD,然后利用相似比求BP的长.
详(1)证明:连接OB,如图,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠A+∠ADB=90°,
∵BC为切线,
∴OB⊥BC,
∴∠OBC=90°,
∴∠OBA+∠CBP=90°,
而OA=OB,
∴∠A=∠OBA,
∴∠CBP=∠ADB;
(2)解:∵OP⊥AD,
∴∠POA=90°,
∴∠P+∠A=90°,
∴∠P=∠D,
∴△AOP∽△ABD,
∴,即,
∴BP=1.
点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.
24、39米
【解析】
过点A作AE⊥CD,垂足为点E, 在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.
【详解】
解:过点A作AE⊥CD,垂足为点E,
由题意得,AE= BC=28,∠EAD=25°,∠EAC=43°,
在Rt△ADE中,∵,∴,
在Rt△ACE中,∵,∴,
∴(米),
答:建筑物CD的高度约为39米.
2023年浙江省嘉兴市桐乡市中考数学一模试卷(含解析): 这是一份2023年浙江省嘉兴市桐乡市中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年浙江省嘉兴市桐乡重点名校毕业升学考试模拟卷数学卷含解析: 这是一份2022年浙江省嘉兴市桐乡重点名校毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,﹣23的相反数是,下列运算正确的是等内容,欢迎下载使用。
2022年浙江省嘉兴市桐乡重点名校中考数学模拟试题含解析: 这是一份2022年浙江省嘉兴市桐乡重点名校中考数学模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。