2022届金平区重点达标名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
2.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则
A.明明的速度是80米分 B.第二次相遇时距离B地800米
C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米
3.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为( )
A.2m B. m C.3m D.6m
4.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A. B. C. D.
5.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
7.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30° B.15° C.10° D.20°
8.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
9.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )
A.8 B.10 C.13 D.14
10.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
A. B. C. D.
11.下列计算正确的是( )
A. += B.﹣= C.×=6 D.=4
12.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
D.抛物线的对称轴是直线x=
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.
14.计算:+=______.
15.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
17.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
18.一个多项式与的积为,那么这个多项式为 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
20.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
21.(6分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.
22.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
23.(8分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
25.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
26.(12分)一次函数的图象经过点和点,求一次函数的解析式.
27.(12分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
∴y随x的增大而减小,
∴在0≤x≤5范围内,
x=0时,函数值最大﹣2×0+3=3,
故选B.
【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
2、B
【解析】
C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;
A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;
B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;
D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.
【详解】
解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,
,
出发20分时两人第一次相遇,C选项错误;
亮亮的速度为米分,
两人的速度和为米分,
明明的速度为米分,A选项错误;
第二次相遇时距离B地距离为米,B选项正确;
出发35分钟时两人间的距离为米,D选项错误.
故选:B.
【点睛】
本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.
3、C
【解析】
依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.
【详解】
解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,
∵三根木条要组成三角形,
∴x-x<10-2x
故选择C.
【点睛】
本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.
4、B
【解析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
【详解】
∵这组数中无理数有,共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
5、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
6、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
7、B
【解析】
分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
详解:如图所示:
∵△ABC是等腰直角三角形,
∴∠BAC=90°,∠ACB=45°,
∴∠1+∠BAC=30°+90°=120°,
∵a∥b,
∴∠ACD=180°-120°=60°,
∴∠2=∠ACD-∠ACB=60°-45°=15°;
故选B.
点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.
8、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
9、C
【解析】
根据三角形的面积公式以及切线长定理即可求出答案.
【详解】
连接PE、PF、PG,AP,
由题意可知:∠PEC=∠PFA=PGA=90°,
∴S△PBC=BC•PE=×4×2=4,
∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
∴由切线长定理可知:S△APG=S四边形AFPG=,
∴=×AG•PG,
∴AG=,
由切线长定理可知:CE=CF,BE=BG,
∴△ABC的周长为AC+AB+CE+BE
=AC+AB+CF+BG
=AF+AG
=2AG
=13,
故选C.
【点睛】
本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
10、C
【解析】
试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
B. 是轴对称图形,不是中心对称图形,故本选项错误;
C. 既是中心对称图又是轴对称图形,故本选项正确;
D. 是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
11、B
【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
【详解】
解:A、与不能合并,所以A选项不正确;
B、-=2−=,所以B选项正确;
C、×=,所以C选项不正确;
D、=÷=2÷=2,所以D选项不正确.
故选B.
【点睛】
此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
12、D
【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;
B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、由抛物线开口向上,可得出y无最大值,C选项错误;
D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
综上即可得出结论.
【详解】
解:A、∵a=1>0,
∴抛物线开口向上,A选项错误;
B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
∴c=1,
∴抛物线的解析式为y=x1-3x+1.
当y=0时,有x1-3x+1=0,
解得:x1=1,x1=1,
∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、∵抛物线开口向上,
∴y无最大值,C选项错误;
D、∵抛物线的解析式为y=x1-3x+1,
∴抛物线的对称轴为直线x=-=-=,D选项正确.
故选D.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1:1
【解析】
根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.
【详解】
∵S△BDE:S△CDE=1:3,
∴BE:EC=1:3,
∵DE∥AC,
∴△BED∽△BCA,
∴S△BDE:S△BCA=()2=1:16,
∴S△BDE:S四边形DECA=1:1,
故答案为1:1.
【点睛】
本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
14、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
15、1
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,
∴m1﹣1m=0且m≠0,
解得,m=1,
故答案是:1.
【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
16、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
17、
【解析】
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
【详解】
解:如图,
由折叠可得,∠AFE=∠A'FE,
∵A'F∥AB,
∴∠AEF=∠A'FE,
∴∠AEF=∠AFE,
∴AE=AF,
由折叠可得,AF=A'F,
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
∵A'F∥AB,
∴△A'CF∽△BCA,
∴,即=,
解得x=,
∴BE=,
故答案为:.
【点睛】
本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
18、
【解析】
试题分析:依题意知
=
考点:整式运算
点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)见解析;(2).
【解析】
分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
详解:(1)连结OP、OA,OP交AD于E,如图,
∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
∴直线AB与⊙O相切;
(2)连结BD,交AC于点F,如图,
∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
∴DF=2,∴AD==2,∴AE=.
在Rt△PAE中,tan∠1==,∴PE=.
设⊙O的半径为R,则OE=R﹣,OA=R.
在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
∴R=,即⊙O的半径为.
点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
20、 (1);(2)
【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
(2)画树状图得:
∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
∴恰好选中甲、乙两人的概率为:
【点睛】
此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
21、﹣x+1,2.
【解析】
先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.
【详解】
原式=(x﹣2)÷(﹣)
=(x﹣2)÷
=(x﹣2)•
=﹣x+1,
当x=﹣1时,原式=1+1=2.
【点睛】
本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.
22、10,1.
【解析】
试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
23、x取0时,为1 或x取1时,为2
【解析】
试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
试题解析:解:原式=[]
=
=
= x+1,
∵x1-4≠0,x-2≠0,
∴x≠1且x≠-1且x≠2,
当x=0时,原式=1.
或当x=1时,原式=2.
24、(1)袋子中白球有2个;(2).
【解析】
试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
试题解析:(1)设袋子中白球有x个,
根据题意得:=,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
考点:列表法与树状图法;概率公式.
25、100或200
【解析】
试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
列方程得,
(8+×4)=4800,
x2﹣300x+20000=0,
解得x1=200,x2=100;
要使百姓得到实惠,只能取x=200,
答:每台冰箱应降价200元.
考点:一元二次方程的应用.
26、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
27、(1)200元和100元(2)至少6件
【解析】
(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
【详解】
解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
得,解得:,
答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
200a+100(34﹣a)≥4000,
解得:a≥6
答:威丽商场至少需购进6件A种商品.
2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,如图,一段抛物线等内容,欢迎下载使用。
2022届孝感市八校联谊重点达标名校中考数学最后一模试卷含解析: 这是一份2022届孝感市八校联谊重点达标名校中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022届金平区重点达标名校中考数学仿真试卷含解析: 这是一份2022届金平区重点达标名校中考数学仿真试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。