|试卷下载
搜索
    上传资料 赚现金
    2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析01
    2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析02
    2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022届宁波市江北区重点中学中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了若,,则的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2 B.8 C.﹣2 D.﹣8
    2.下列计算正确的是( )
    A.2x﹣x=1 B.x2•x3=x6
    C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
    3.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )

    A.150° B.140° C.130° D.120°
    4.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
    ①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    5.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
    A. B. C. D.
    7.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是(  )

    A. B. C. D.
    8.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    9.若,,则的值是(  )
    A.2 B.﹣2 C.4 D.﹣4
    10.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有(  )
    A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0
    11.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )
    A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
    12.若正六边形的半径长为4,则它的边长等于( )
    A.4 B.2 C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.不等式组的解集是____________;
    14.方程的根为_____.
    15.直线y=2x+1经过点(0,a),则a=________.
    16.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    17.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.

    18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)

    (1)写出D级学生的人数占全班总人数的百分比为   ,C级学生所在的扇形圆心角的度数为   ;
    (2)该班学生体育测试成绩的中位数落在等级   内;
    (3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
    20.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    21.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:

    (1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
    (2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
    (3)画射线OP.
    则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
    22.(8分)先化简再求值:÷(﹣1),其中x=.
    23.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).

    24.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.

    25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    26.(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).

    27.(12分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
    (1)求证:;
    (2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
    ①如图2,若∠AFE=45°,求的值;
    ②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
    考点:一次函数图象上点的坐标特征.
    2、D
    【解析】
    根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、2x-x=x,错误;
    B、x2•x3=x5,错误;
    C、(m-n)2=m2-2mn+n2,错误;
    D、(-xy3)2=x2y6,正确;
    故选D.
    【点睛】
    考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
    3、A
    【解析】
    直接根据圆周角定理即可得出结论.
    【详解】
    ∵A、B、C是⊙O上的三点,∠B=75°,
    ∴∠AOC=2∠B=150°.
    故选A.
    4、D
    【解析】
    ①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
    所以﹣=﹣1,可得b=2a,
    当x=﹣3时,y<0,
    即9a﹣3b+c<0,
    9a﹣6a+c<0,
    3a+c<0,
    ∵a<0,
    ∴4a+c<0,
    所以①选项结论正确;
    ②∵抛物线的对称轴是直线x=﹣1,
    ∴y=a﹣b+c的值最大,
    即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
    ∴am2+bm<a﹣b,
    m(am+b)+b<a,
    所以此选项结论不正确;
    ③ax2+(b﹣1)x+c=0,
    △=(b﹣1)2﹣4ac,
    ∵a<0,c>0,
    ∴ac<0,
    ∴﹣4ac>0,
    ∵(b﹣1)2≥0,
    ∴△>0,
    ∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
    ④由图象得:当x>﹣1时,y随x的增大而减小,
    ∵当k为常数时,0≤k2≤k2+1,
    ∴当x=k2的值大于x=k2+1的函数值,
    即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
    ak4+bk2>a(k2+1)2+b(k2+1),
    所以此选项结论不正确;
    所以正确结论的个数是1个,
    故选D.
    5、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    6、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
    【详解】
    画树状图如下:

    由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
    所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
    故选B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    7、B
    【解析】
    根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
    【详解】
    解:∵矩形OABC,

    ∴CB∥x轴,AB∥y轴.
    ∵点B坐标为(6,1),
    ∴D的横坐标为6,E的纵坐标为1.
    ∵D,E在反比例函数的图象上,
    ∴D(6,1),E(,1),
    ∴BE=6﹣=,BD=1﹣1=3,
    ∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
    ∵B,B′关于ED对称,
    ∴BF=B′F,BB′⊥ED,
    ∴BF•ED=BE•BD,即BF=3×,
    ∴BF=,
    ∴BB′=.
    设EG=x,则BG=﹣x.
    ∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
    ∴,
    ∴x=,
    ∴EG=,
    ∴CG=,
    ∴B′G=,
    ∴B′(,﹣),
    ∴k=.
    故选B.
    【点睛】
    本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
    8、C
    【解析】
    由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
    【详解】
    详解:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,



    ∴AQ⊥DP;
    故①正确;
    ②无法证明,故错误.
    ∵BP=1,AB=3,



    ∴ 故③正确,
    故选C.
    【点睛】
    考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
    9、D
    【解析】
    因为,所以,因为,故选D.
    10、D
    【解析】
    当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.
    11、B
    【解析】
    80万亿用科学记数法表示为8×1.
    故选B.
    点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    12、A
    【解析】
    试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
    考点:正多边形和圆.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣9<x≤﹣1
    【解析】
    分别求出两个不等式的解集,再求其公共解集.
    【详解】

    解不等式①,得:x≤-1,
    解不等式②,得:x>-9,
    所以不等式组的解集为:-9<x≤-1,
    故答案为:-9<x≤-1.
    【点睛】
    本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    14、﹣2或﹣7
    【解析】
    把无理方程转化为整式方程即可解决问题.
    【详解】
    两边平方得到:13+2=25,
    ∴=6,
    ∴(x+11)(2-x)=36,
    解得x=-2或-7,
    经检验x=-2或-7都是原方程的解.
    故答案为-2或-7
    【点睛】
    本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.
    15、1 
    【解析】
    根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.
    【详解】
    ∵直线y=2x+1经过点(0,a),
    ∴a=2×0+1,
    ∴a=1.
    故答案为1.
    16、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
    17、40cm
    【解析】
    首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
    【详解】
    ∵圆锥的底面直径为60cm,
    ∴圆锥的底面周长为60πcm,
    ∴扇形的弧长为60πcm,
    设扇形的半径为r,
    则=60π,
    解得:r=40cm,
    故答案为:40cm.
    【点睛】
    本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
    18、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.


    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)4%;(2)72°;(3)380人
    【解析】
    (1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;
    (2)将人数按级排列,可得该班学生体育测试成绩的中位数;
    (3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;
    (4)根据各等级人数多少,设计合格的等级,使大多数人能合格.
    【详解】
    解:(1)九年级(1)班学生人数为13÷26%=50人,
    C级人数为50-13-25-2=10人,
    C等级所在的扇形圆心角的度数为10÷50×360°=72°,
    故答案为72°;
    (2)共50人,其中A级人数13人,B级人数25人,
    故该班学生体育测试成绩的中位数落在B等级内,
    故答案为B;
    (3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;
    (4)建议:把到达A级和B级的学生定为合格,(答案不唯一).

    20、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    21、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
    【解析】
    利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
    【详解】
    有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
    所以∠POM=∠PON,
    即射线OP为∠AOB的平分线.
    故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
    【点睛】
    本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
    22、
    【解析】
    分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    详解:原式=
    =
    =
    =
    当时,原式==.
    点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    23、 (1)见解析;(2)
    【解析】
    (1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;
    (2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.
    【详解】
    (1)证明:∵∠B=60°,OB=OC,
    ∴△BOC是等边三角形,
    ∴∠1=∠3=60°,
    ∵OC平分∠AOB,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴OA∥BD,
    ∵∠BDM=90°,
    ∴∠OAM=90°,
    又OA为⊙O的半径,
    ∴AM是⊙O的切线
    (2)解:连接AC,
    ∵∠3=60°,OA=OC,
    ∴△AOC是等边三角形,
    ∴∠OAC=60°,
    ∴∠CAD=30°,
    ∵OC=AC=4,
    ∴CD=2,
    ∴AD=2 ,
    ∴S阴影=S梯形OADC﹣S扇形OAC= ×(4+2)×2﹣.
    【点睛】
    本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.
    24、证明见解析.
    【解析】
    试题分析:由可得则可证明,因此可得
    试题解析:即,在和中,
    考点:三角形全等的判定.
    25、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    26、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米.
    【解析】
    延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=,构建方程求出x即可.
    【详解】
    延长BC交OP于H.

    ∵斜坡AP的坡度为1:2.4,
    ∴,
    设AD=5k,则PD=12k,由勾股定理,得AP=13k,
    ∴13k=26,
    解得k=2,
    ∴AD=10,
    ∵BC⊥AC,AC∥PO,
    ∴BH⊥PO,
    ∴四边形ADHC是矩形,CH=AD=10,AC=DH,
    ∵∠BPD=45°,
    ∴PH=BH,
    设BC=x,则x+10=24+DH,
    ∴AC=DH=x﹣14,
    在Rt△ABC中,tan76°=,即≈4.1.
    解得:x≈18.7,
    经检验x≈18.7是原方程的解.
    答:古塔BC的高度约为18.7米.
    【点睛】
    本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.
    27、(1)见解析;(2)①;②cos∠AFE=
    【解析】
    (1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;
    (2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.
    【详解】
    (1)设BE=EC=2,则AB=BC=4,
    ∵,
    ∴,
    ∵,
    ∴∠FEC=∠EAB,
    又∴,
    ∴,
    ∴,
    即,
    ∴CF=1,
    则,
    ∴;
    (2)①如图2,过F作交AD于点G,
    ∵,
    ∴和是等腰直角三角形,
    ∴,,
    ∴∠AGF=∠C,
    又∵,
    ∴∠GAF=∠CFE,
    ∴,
    ∴,
    又∵GF=DF,
    ∴;

    ②如图3,作交AD于点T,作于H,
    则,
    ∴,
    ∴∠ATF=∠C,
    又∵,且∠D=∠AFE,
    ∴∠TAF=∠CFE,
    ∴,
    ∴,
    设CF=2,则CE=6,可设AT=x,则TF=3x,,
    ∴,且,
    由,得,
    解得x=5,
    ∴.

    【点睛】
    本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.

    相关试卷

    浙江省宁波市海曙区重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份浙江省宁波市海曙区重点中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知A样本的数据如下等内容,欢迎下载使用。

    2022年文山市重点中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年文山市重点中学中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的正方体的展开图是等内容,欢迎下载使用。

    2022年铜川市重点中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年铜川市重点中学中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了下列解方程去分母正确的是,下列函数中,二次函数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map