|试卷下载
搜索
    上传资料 赚现金
    2022年山西大附中中考数学四模试卷含解析
    立即下载
    加入资料篮
    2022年山西大附中中考数学四模试卷含解析01
    2022年山西大附中中考数学四模试卷含解析02
    2022年山西大附中中考数学四模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山西大附中中考数学四模试卷含解析

    展开
    这是一份2022年山西大附中中考数学四模试卷含解析,共22页。试卷主要包含了下列各数中,无理数是,的相反数是,已知一次函数y=,的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
    A. B. C. D.
    2.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )

    A.3cm B.4cm C.5cm D.6cm
    3.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数(k≠0)的图象经过点C.则下列结论不正确的是(  )

    A.□OACB的面积为12
    B.若y<3,则x>5
    C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.
    D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.
    4.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    5.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    6.下列各数中,无理数是(  )
    A.0 B. C. D.π
    7.的相反数是 ( )
    A.6 B.-6 C. D.
    8.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是(  )
    A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
    9.的倒数是( )
    A. B.3 C. D.
    10.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和(  )
    A.增加(n﹣2)×180° B.减小(n﹣2)×180°
    C.增加(n﹣1)×180° D.没有改变
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm.
    12.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.

    13.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )


    14.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
    15.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
    16.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.

    17.如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是   ,位置关系是   ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

    19.(5分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.

    20.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
    (1)如图1,当AB=AC,且sin∠BEF=时,求的值;
    (2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
    (3)如图3,连AD交BC于G,当时,求矩形BCDE的面积

    21.(10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

    (1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
    (2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
    (3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
    22.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
    (1)求证:AC是⊙O的切线;
    (2)若BF=6,⊙O的半径为5,求CE的长.

    23.(12分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?

    24.(14分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.

    (1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
    (2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:1800000这个数用科学记数法可以表示为
    故选C.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    2、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
    3、B
    【解析】
    先根据平行四边形的性质得到点的坐标,再代入反比例函数(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.
    【详解】
    解:A(4,0),B(1,3),,

    反比例函数(k≠0)的图象经过点,

    反比例函数解析式为.
    □OACB的面积为,正确;
    当时,,故错误;
    将□OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;
    因为反比例函数的图象关于原点中心对称,故将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.
    故选:B.
    【点睛】
    本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.
    4、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    5、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    6、D
    【解析】
    利用无理数定义判断即可.
    【详解】
    解:π是无理数,
    故选:D.
    【点睛】
    此题考查了无理数,弄清无理数的定义是解本题的关键.
    7、D
    【解析】
    根据相反数的定义解答即可.
    【详解】
    根据相反数的定义有:的相反数是.
    故选D.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    8、D
    【解析】
    直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
    当经过第一、二、四象限时, ,解得0 综上所述,0≤k<2。故选D
    9、A
    【解析】
    解:的倒数是.
    故选A.
    【点睛】
    本题考查倒数,掌握概念正确计算是解题关键.
    10、D
    【解析】
    根据多边形的外角和等于360°,与边数无关即可解答.
    【详解】
    ∵多边形的外角和等于360°,与边数无关,
    ∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.
    故选D.
    【点睛】
    本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4
    【解析】
    已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm.就可以根据勾股定理求出圆锥的高.
    【详解】
    设底面圆的半径是r,则2πr=6π,
    ∴r=3cm,
    ∴圆锥的高==4cm.
    故答案为4.
    12、1
    【解析】
    分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
    详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
    ∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
    ∴点A的坐标为(1,1), ∴k=1×1=1.

    点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
    13、C
    【解析】
    先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.
    【详解】
    由已知可知∠EPD=90°,
    ∴∠BPE+∠DPC=90°,
    ∵∠DPC+∠PDC=90°,
    ∴∠CDP=∠BPE,
    ∵∠B=∠C=90°,
    ∴△BPE∽△CDP,
    ∴BP:CD=BE:CP,即x:3=y:(5-x),
    ∴y=(0<x<5);
    故选C.
    考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.
    14、10%
    【解析】
    设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
    【详解】
    设平均每次上调的百分率是x,
    依题意得,
    解得:,(不合题意,舍去).
    答:平均每次上调的百分率为10%.
    故答案是:10%.
    【点睛】
    此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    15、
    【解析】
    先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
    的图象经过一、三象限,k>0,从而可以求出k的取值范围.
    【详解】
    ∵y=(k-1)x的函数值y随x的增大而减小,
    ∴k-1<0
    ∴k<1
    而y=(k-1)x的图象与反比例函数y=
    的图象没有公共点,
    ∴k>0
    综合以上可知:0<k<1.
    故答案为0<k<1.
    【点睛】
    本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
    16、1.1
    【解析】
    求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.
    【详解】
    ∵DE=1,DC=3,
    ∴EC=3-1=2,
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴△DEF∽△CEB,
    ∴,
    ∴,
    ∴DF=1.1,
    故答案为1.1.
    【点睛】
    此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.
    17、
    【解析】
    先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
    【详解】
    解:∵四边形是正方形,
    ∴,,.
    在中,为的中点,
    ∴.
    ∵的周长为18,,
    ∴,
    ∴.
    在中,根据勾股定理,得,
    ∴,
    ∴.
    在中,∵,为的中点,
    又∵为的中位线,
    ∴.
    故答案为:.
    【点睛】
    本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.

    三、解答题(共7小题,满分69分)
    18、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=

    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    19、见解析
    【解析】
    连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
    【详解】
    证明:连接AF,

    ∵EF为AB的垂直平分线,
    ∴AF=BF,
    又AB=AC,∠BAC=120°,
    ∴∠B=∠C=∠BAF=30°,
    ∴∠FAC=90°,
    ∴AF=FC,
    ∴FC=2BF.
    【点睛】
    本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
    20、 (1) ;(2)80;(3)100.
    【解析】
    (1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
    【详解】
    解:(1)过A作AK⊥BC于K,
    ∵sin∠BEF=,sin∠FAK=,
    ∴,
    设FK=3a,AK=5a,
    ∴AK=4a,
    ∵AB=AC,∠BAC=90°,
    ∴BK=CK=4a,
    ∴BF=a,
    又∵CF=7a,

    (2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
    ∵∠AGE=∠DHE=90°,
    ∴△EGA∽△EHD,
    ∴,
    ∴,其中EG=BK,
    ∵BC=10,tan∠ABC=,
    cos∠ABC=,
    ∴BA=BC· cos∠ABC=,
    BK= BA·cos∠ABC=
    ∴EG=8,
    另一方面:ED=BC=10,
    ∴EH·EA=80
    (3)延长AB、ED交于K,延长AC、ED交于T,
    ∵BC∥KT, ,
    ∴,同理:
    ∵FG2= BF·CG ∴,
    ∴ED2= KE·DT ∴ ,
    又∵△KEB∽△CDT,∴,
    ∴KE·DT =BE2, ∴BE2=ED2
    ∴ BE=ED


    【点睛】
    此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
    21、(1)50(2)420(3)P=
    【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
    (2)由题意可求得130~145分所占比例,进而求出答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
    则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
    如图:

    (2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
    答:考试成绩评为“B”的学生大约有448名;
    (3)画树状图得:

    ∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
    ∴所选两名学生刚好是一名女生和一名男生的概率为: =.
    考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
    视频
    22、(1)证明见解析;(2)CE=1.
    【解析】
    (1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
    (2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
    【详解】
    (1)证明:如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵ BE平分∠ABC.
    ∴∠OBE=∠EBC,
    ∴∠OEB=∠EBC,
    ∴OE∥BC,
    ∵ ∠ACB=90° ,
    ∴∠OEA=∠ACB=90°,
    ∴ AC是⊙O的切线 .
    (2)解:过O作OH⊥BF,
    ∴BH=BF=3,四边形OHCE是矩形,
    ∴CE=OH,
    在Rt△OBH中,BH=3,OB=5,
    ∴OH==1,
    ∴CE=1.
    【点睛】
    本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
    23、(1)结果见解析;(2)不公平,理由见解析.
    【解析】
    判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.
    24、(1)30°;(2)20°;
    【解析】
    (1)利用圆切线的性质求解;
    (2) 连接OQ,利用圆的切线性质及角之间的关系求解。
    【详解】
    (1)如图①中,连接OQ.

    ∵EQ是切线,
    ∴OQ⊥EQ,
    ∴∠OQE=90°,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∴∠AQB=∠AOB=45°,
    ∵OB=OQ,
    ∴∠OBQ=∠OQB=15°,
    ∴∠AQE=90°﹣15°﹣45°=30°.
    (2)如图②中,连接OQ.

    ∵OB=OQ,
    ∴∠B=∠OQB=65°,
    ∴∠BOQ=50°,
    ∵∠AOB=90°,
    ∴∠AOQ=40°,
    ∵OQ=OA,
    ∴∠OQA=∠OAQ=70°,
    ∵EQ是切线,
    ∴∠OQE=90°,
    ∴∠AQE=90°﹣70°=20°.
    【点睛】
    此题主要考查圆的切线的性质及圆中集合问题的综合运等.

    相关试卷

    2024年陕西师大附中中考数学四模试卷(含解析): 这是一份2024年陕西师大附中中考数学四模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年云南大学附中中考数学四模试卷(含解析): 这是一份2023年云南大学附中中考数学四模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年吉林大学附中中考数学四模试卷(含解析): 这是一份2023年吉林大学附中中考数学四模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map