![2022年山东省寿光市现代中学中考数学五模试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13444647/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山东省寿光市现代中学中考数学五模试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13444647/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年山东省寿光市现代中学中考数学五模试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13444647/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年山东省寿光市现代中学中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )
A.1,2 B.1,3
C.4,2 D.4,3
3.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
5.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
6.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是( )
A.8 B.﹣8 C.﹣12 D.12
7.若x是2的相反数,|y|=3,则的值是( )
A.﹣2 B.4 C.2或﹣4 D.﹣2或4
8.下列四个几何体,正视图与其它三个不同的几何体是( )
A. B.
C. D.
9.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
10.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )
A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式:ab2﹣9a=_____.
12.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.
13.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.
14.计算: 7+(-5)=______.
15.因式分解:9a3b﹣ab=_____.
16.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)
三、解答题(共8题,共72分)
17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)
18.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.
19.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
20.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.
21.(8分)先化简,再求值:,其中
22.(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经
了解得到以下信息(如表):
工程队 | 每天修路的长度(米) | 单独完成所需天数(天) | 每天所需费用(元) |
甲队 | 30 | n | 600 |
乙队 | m | n﹣14 | 1160 |
(1)甲队单独完成这项工程所需天数n= ,乙队每天修路的长度m= (米);
(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).
①当x=90时,求出乙队修路的天数;
②求y与x之间的函数关系式(不用写出x的取值范围);
③若总费用不超过22800元,求甲队至少先修了多少米.
23.(12分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.
24.如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
(1)求反比例函数及一次函数解析式;
(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
2、A
【解析】
试题分析:通过猜想得出数据,再代入看看是否符合即可.
解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,
30+4×3=42,
故选A.
点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.
3、C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
4、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
5、A
【解析】
因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
6、D
【解析】
根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.
【详解】
∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.
故选D.
【点睛】
本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.
7、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
8、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
9、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
10、C
【解析】
试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
故选C.
考点:1、矩形性质,2、勾股定理,3、三角形的中位线
二、填空题(本大题共6个小题,每小题3分,共18分)
11、a(b+3)(b﹣3).
【解析】
根据提公因式,平方差公式,可得答案.
【详解】
解:原式=a(b2﹣9)
=a(b+3)(b﹣3),
故答案为:a(b+3)(b﹣3).
【点睛】
本题考查了因式分解,一提,二套,三检查,分解要彻底.
12、8
【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
【详解】
解:如图,连接OC.
∵AB是⊙O切线,
∴OC⊥AB,AC=BC,
在Rt△ACO中,∵∠ACO=90°,OC=OD=2
tan∠OAB=,
∴,
∴AC=4,
∴AB=2AC=8,
故答案为8
【点睛】
本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
13、.
【解析】
已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.
【详解】
过点B作BC垂直OA于C,
∵点A的坐标是(2,0),
∴AO=2,
∵△ABO是等边三角形,
∴OC=1,BC=,
∴点B的坐标是
把代入,得
故答案为.
【点睛】
考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;
14、2
【解析】
根据有理数的加法法则计算即可.
【详解】
.
故答案为:2.
【点睛】
本题考查有理数的加法计算,熟练掌握加法法则是关键.
15、ab(3a+1)(3a-1).
【解析】
试题分析:原式提取公因式后,利用平方差公式分解即可.
试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).
考点: 提公因式法与公式法的综合运用.
16、4
【解析】
根据圆柱的侧面积公式,计算即可.
【详解】
圆柱的底面半径为r=1,母线长为l=2,
则它的侧面积为S侧=2πrl=2π×1×2=4π.
故答案为:4π.
【点睛】
题考查了圆柱的侧面积公式应用问题,是基础题.
三、解答题(共8题,共72分)
17、30米
【解析】
设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.
【详解】
由题意得,∠ABD=30°,∠ACD=45°,BC=60m,
设AD=xm,
在Rt△ACD中,∵tan∠ACD=,
∴CD=AD=x,
∴BD=BC+CD=x+60,
在Rt△ABD中,∵tan∠ABD=,
∴,
∴米,
答:山高AD为30米.
【点睛】
本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
18、1.
【解析】
试题分析:根据相似三角形的判定与性质,可得答案.
试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
考点:相似三角形的判定与性质.
19、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
【解析】
试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.
试题解析:(1)△A1BC1如图所示.
(2)△A2B2C2如图所示,点C2的坐标为(-6,4).
20、x1=,x2=
【解析】
试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.
试题解析:解:方程化为,,,.
>1.
.
即,.
21、 ;.
【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
【详解】
解:原式==
把代入得:原式=.
【点睛】
本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
22、(1)35,50;(2)①12;②y=﹣x+;③150米.
【解析】
(1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;
(2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;
②由①中的相等关系可得y与x之间的函数关系式;
③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.
【详解】
解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),
则乙单独完成所需天数为21天,
∴乙队每天修路的长度m=1050÷21=50(米),
故答案为35,50;
(2)①乙队修路的天数为=12(天);
②由题意,得:x+(30+50)y=1050,
∴y与x之间的函数关系式为:y=﹣x+;
③由题意,得:600×+(600+1160)(﹣x+)≤22800,
解得:x≥150,
答:若总费用不超过22800元,甲队至少先修了150米.
【点睛】
本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
23、 (8+8)m.
【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
【详解】
在Rt△EBC中,有BE=EC×tan45°=8m,
在Rt△AEC中,有AE=EC×tan30°=8m,
∴AB=8+8(m).
【点睛】
本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
24、(1);;(2)点P坐标为(,).
【解析】
(1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
(2)先求出△EBF的面积,
点P是线段EF上一点,可设点P坐标为,
根据面积公式即可求出P点坐标.
【详解】
解:(1)∵反比例函数经过点,
∴n=2,
反比例函数解析式为.
∵的图象经过点E(1,m),
∴m=2,点E坐标为(1,2).
∵直线 过点,点,
∴,解得,
∴一次函数解析式为;
(2)∵点E坐标为(1,2),点F坐标为,
∴点B坐标为(4,2),
∴BE=3,BF=,
∴,
∴ .
点P是线段EF上一点,可设点P坐标为,
∴,
解得,
∴点P坐标为.
【点睛】
本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.
2024年山东省潍坊市寿光市中考数学三模试卷(含解析): 这是一份2024年山东省潍坊市寿光市中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
山东省潍坊市寿光市2021-2022学年中考数学模试卷含解析: 这是一份山东省潍坊市寿光市2021-2022学年中考数学模试卷含解析,共20页。试卷主要包含了估计的值在,点A,我市某一周的最高气温统计如下表等内容,欢迎下载使用。
山东省寿光市实验中学2022年中考数学押题卷含解析: 这是一份山东省寿光市实验中学2022年中考数学押题卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,抛物线y=3等内容,欢迎下载使用。