|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年山东省曹县中考数学押题试卷含解析
    立即下载
    加入资料篮
    2022年山东省曹县中考数学押题试卷含解析01
    2022年山东省曹县中考数学押题试卷含解析02
    2022年山东省曹县中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省曹县中考数学押题试卷含解析

    展开
    这是一份2022年山东省曹县中考数学押题试卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )

    A.90° B.120° C.270° D.360°
    2.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是(  )

    A.10 B. C. D.15
    3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )
    A.﹣=10 B.﹣=10
    C.﹣=10 D. +=10
    4.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为(  )

    A.30° B.40° C.50° D.60°
    5.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    6.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则  
    A.圆锥形冰淇淋纸套的底面半径为4cm
    B.圆锥形冰淇淋纸套的底面半径为6cm
    C.圆锥形冰淇淋纸套的高为
    D.圆锥形冰淇淋纸套的高为
    7.x=1是关于x的方程2x﹣a=0的解,则a的值是(  )
    A.﹣2 B.2 C.﹣1 D.1
    8.化简的结果是(  )
    A. B. C. D.
    9.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    10.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为(  )
    A.6×105 B.6×106 C.6×107 D.6×108
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=  ▲  .
    12.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.

    13.一个正多边形的一个外角为30°,则它的内角和为_____.
    14.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________

    15.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    16.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.

    三、解答题(共8题,共72分)
    17.(8分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
    (1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
    (2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值.
    18.(8分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).

    19.(8分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

    (1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
    (2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
    (3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
    20.(8分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
    (1)求m的值及一次函数解析式;
    (2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.

    21.(8分)(1)化简:
    (2)解不等式组.
    22.(10分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.

    23.(12分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
    小聪计算这一题的过程如下:
    解:原式=(a﹣1)÷…①
    =(a﹣1)•…②
    =…③
    当a=1,b=1时,原式=…④
    以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
    还有第_____步出错(填序号),原因:_____.
    请你写出此题的正确解答过程.
    24.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
    (1)求抛物线的解析式;
    (2)当点P运动到什么位置时,△PAB的面积有最大值?
    (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
    【详解】
    ∵图中是三个等边三角形,∠3=60°,
    ∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
    ∠BAC=180°-60°-∠1=120°-∠1,
    ∵∠ABC+∠ACB+∠BAC=180°,
    ∴60°+(120°-∠2)+(120°-∠1)=180°,
    ∴∠1+∠2=120°.
    故选B.
    【点睛】
    考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
    2、C
    【解析】
    A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
    【详解】
    A,C之间的距离为6,
    2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
    在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
    ∴m=6,
    2020﹣2017=3,故点Q与点P的水平距离为3,

    解得k=6,
    双曲线
    1+3=4,
    即点Q离x轴的距离为,

    ∵四边形PDEQ的面积是.
    故选:C.
    【点睛】
    考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
    3、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    4、C
    【解析】
    依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
    【详解】
    解:∵a∥b,
    ∴∠1=∠BAC=40°,
    又∵∠ABC=90°,
    ∴∠2=90°−40°=50°,
    故选C.
    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
    5、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    6、C
    【解析】
    根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
    【详解】
    解:半径为12cm,圆心角为的扇形弧长是:,
    设圆锥的底面半径是rcm,
    则,
    解得:.
    即这个圆锥形冰淇淋纸套的底面半径是2cm.
    圆锥形冰淇淋纸套的高为.
    故选:C.
    【点睛】
    本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
    圆锥的母线长等于侧面展开图的扇形半径;
    圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
    7、B
    【解析】
    试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
    故选B.
    考点:一元一次方程的解.
    8、D
    【解析】
    将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
    【详解】
    原式=×=×(+1)=2+.
    故选D.
    【点睛】
    本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
    9、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形.故错误;
    B.不是轴对称图形,也不是中心对称图形.故错误;
    C.是轴对称图形,也是中心对称图形.故正确;
    D.不是轴对称图形,是中心对称图形.故错误.
    故选C.
    【点睛】
    掌握好中心对称图形与轴对称图形的概念.
    轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
    中心对称图形是要寻找对称中心,旋转180°后与原图重合.
    10、C
    【解析】
    将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
    【详解】
    解:6000万=6×1.
    故选:C.
    【点睛】
    此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    连接BE,

    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    12、1
    【解析】
    本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.
    【详解】
    ∵△BDE是正三角形,
    ∴∠DBE=60°;
    ∵在△ABC中,∠C=∠ABC,BE⊥AC,
    ∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;
    ∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,
    解得∠C=75°,
    ∴∠ABC=75°,
    ∴∠A=30°,
    ∵∠AED=90°-∠DEB=30°,
    ∴∠A=∠AED,
    ∴DE=AD=1,
    ∴BE=DE=1,
    故答案为:1.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
    13、1800°
    【解析】
    试题分析:这个正多边形的边数为=12,
    所以这个正多边形的内角和为(12﹣2)×180°=1800°.
    故答案为1800°.
    考点:多边形内角与外角.
    14、
    【解析】
    作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
    【详解】
    作PD⊥BC,则PD∥AC,
    ∴△PBD~△ABC,
    ∴ .
    ∵AC=3,BC=4,
    ∴AB=,
    ∵AP=2BP,
    ∴BP=,
    ∴,
    ∴点P运动的路径长=.
    故答案为:.

    【点睛】
    本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
    15、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.
    16、1
    【解析】
    分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
    详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
    ∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
    ∴点A的坐标为(1,1), ∴k=1×1=1.

    点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.

    三、解答题(共8题,共72分)
    17、(1)1600千米;(2)1
    【解析】
    试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;
    (2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.
    试题解析:
    (1)设原时速为xkm/h,通车后里程为ykm,则有:

    解得: .
    答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;
    (2)由题意可得出:(80+120)(1﹣m%)(8+m%)=1600,
    解得:m1=1,m2=0(不合题意舍去),
    答:m的值为1.
    18、(1)、(2)见解析(3)
    【解析】
    试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
    试题解析:(1)A(0,4)C(3,1)
    (2)如图所示:
    (3)根据勾股定理可得:AC=3,则.
    考点:图形的旋转、扇形的弧长计算公式.
    19、(1)50(2)420(3)P=
    【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
    (2)由题意可求得130~145分所占比例,进而求出答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
    则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
    如图:

    (2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
    答:考试成绩评为“B”的学生大约有448名;
    (3)画树状图得:

    ∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
    ∴所选两名学生刚好是一名女生和一名男生的概率为: =.
    考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
    视频
    20、(1)m=2;y=x+;(2)P点坐标是(﹣,).
    【解析】
    (1)利用待定系数法求一次函数和反比例函数的解析式;
    (2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
    【详解】
    解:(1)∵反比例函数的图象过点

    ∵点B(﹣1,m)也在该反比例函数的图象上,
    ∴﹣1•m=﹣2,
    ∴m=2;
    设一次函数的解析式为y=kx+b,
    由y=kx+b的图象过点A,B(﹣1,2),则
    解得:
    ∴一次函数的解析式为
    (2)连接PC、PD,如图,设
    ∵△PCA和△PDB面积相等,

    解得:
    ∴P点坐标是

    【点睛】
    本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
    21、(1);(2)﹣2<x<1
    【解析】
    (1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
    (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
    【详解】
    (1)原式=;
    (2)不等式组整理得:,
    则不等式组的解集为﹣2<x<1.
    【点睛】
    此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.
    22、2.7米.
    【解析】
    先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.
    【详解】
    在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,
    ∴AB2=0.72+2.22=6.1.
    在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,
    ∴BD2+1.52=6.1,
    ∴BD2=2.
    ∵BD>0,
    ∴BD=2米.
    ∴CD=BC+BD=0.7+2=2.7米.
    答:小巷的宽度CD为2.7米.
    【点睛】
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
    23、①, 运算顺序错误; ④, a等于1时,原式无意义.
    【解析】
    由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
    【详解】
    ①运算顺序错误;
    故答案为①,运算顺序错误;
    ④当a=1时,等于0,原式无意义.
    故答案为a等于1时,原式无意义.



    当时,原式
    【点睛】
    本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.
    24、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
    【解析】
    (1)利用待定系数法进行求解即可得;
    (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
    (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
    【详解】
    (1)∵抛物线过点B(6,0)、C(﹣2,0),
    ∴设抛物线解析式为y=a(x﹣6)(x+2),
    将点A(0,6)代入,得:﹣12a=6,
    解得:a=﹣,
    所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
    (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

    设直线AB解析式为y=kx+b,
    将点A(0,6)、B(6,0)代入,得:

    解得:,
    则直线AB解析式为y=﹣x+6,
    设P(t,﹣t2+2t+6)其中0<t<6,
    则N(t,﹣t+6),
    ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
    ∴S△PAB=S△PAN+S△PBN
    =PN•AG+PN•BM
    =PN•(AG+BM)
    =PN•OB
    =×(﹣t2+3t)×6
    =﹣t2+9t
    =﹣(t﹣3)2+,
    ∴当t=3时,△PAB的面积有最大值;
    (3)△PDE为等腰直角三角形,
    则PE=PD,
    点P(m,-m2+2m+6),
    函数的对称轴为:x=2,则点E的横坐标为:4-m,
    则PE=|2m-4|,
    即-m2+2m+6+m-6=|2m-4|,
    解得:m=4或-2或5+或5-(舍去-2和5+)
    故点P的坐标为:(4,6)或(5-,3-5).
    【点睛】
    本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.

    相关试卷

    2023年山东省菏泽市曹县中考数学一模试卷(含解析): 这是一份2023年山东省菏泽市曹县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年山东省菏泽市曹县中考数学二模试卷(含解析): 这是一份2023年山东省菏泽市曹县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省泰安六中中考数学押题试卷(含解析): 这是一份2023年山东省泰安六中中考数学押题试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map