2022年山东省五莲于里中学中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在中,,,,则的值是( )
A. B. C. D.
2.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
3.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是( )
A.2 B.3 C.4 D.5
4.4的平方根是( )
A.16 B.2 C.±2 D.±
5.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2 B. C. D.2
6.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
7.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
8.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
A.﹣8 B.﹣4 C.4 D.8
9.下列运算正确的是( )
A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
10.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
A. B. C. D.
11.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
12.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.2个 B.3个 C.4个 D.5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如果,那么=_____.
14.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.
15. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
16.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.
17.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.
18.函数的定义域是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
20.(6分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
21.(6分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
22.(8分)解不等式组,并把解集在数轴上表示出来.
23.(8分)先化简,再求值:,其中.
24.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
25.(10分)计算:.
26.(12分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
27.(12分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
【详解】
∵∠C=90°,BC=1,AB=4,
∴,
∴,
故选:D.
【点睛】
本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
2、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
3、B
【解析】
由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.
【详解】
∵数轴上的点 A,B 分别与实数﹣1,1 对应,
∴AB=|1﹣(﹣1)|=2,
∴BC=AB=2,
∴与点 C 对应的实数是:1+2=3.
故选B.
【点睛】
本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.
4、C
【解析】
试题解析:∵(±2)2=4,
∴4的平方根是±2,
故选C.
考点:平方根.
5、C
【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=CP=1,
∴PE=,
∴OP=2PE=2,
∵PD⊥OA,点M是OP的中点,
∴DM=OP=.
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
6、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
7、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
8、B
【解析】
根据反比例函数的图象和性质结合矩形和三角形面积解答.
【详解】
解:作,连接.
∵四边形AHEB,四边形ECOH都是矩形,BE=EC,
∴
故选B.
【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
9、D
【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
,正确,故选D.
10、A
【解析】
作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
解:作AH⊥BC于H,作直径CF,连结BF,如图,
∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
∵AH⊥BC,∴CH=BH,
∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
∴,
∴BC=2BH=2.
故选A.
“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
11、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
12、B
【解析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B.
【点睛】
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题解析:
设a=2t,b=3t,
故答案为:
14、
【解析】
根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
【详解】
∵sinD=
∴
∴AD=11
∵四边形ABCD是菱形
∴AD=CD=11
∴菱形ABCD的面积=11×8=96cm1.
故答案为:96cm1.
【点睛】
本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
15、
【解析】
根据概率是所求情况数与总情况数之比,可得答案.
【详解】
因为共有六个小组,
所以第五组被抽到的概率是,
故答案为:.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
16、65°
【解析】
因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.
17、2.04×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
解:204000用科学记数法表示2.04×1.
故答案为2.04×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
18、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
【点睛】
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
(2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
(3)存在,P点坐标为(,)或(,﹣).
【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
【详解】
(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
设直线l的解析式为y=kx+b,
把A(﹣1,0),D(0,﹣)代入得,解得,
∴直线l的解析式为y=﹣x﹣;
(2)①作A′H⊥x轴于H,如图,
∵OA=1,OD=,
∴∠OAD=60°,
∵EF∥AD,
∴∠AEF=60°,
∵点A 关于直线l的对称点为A′,
∴EA=EA′=t,∠A′EF=∠AEF=60°,
在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
∴OH=OE+EH=t﹣1+t=t﹣1,
∴A′(t﹣1, t);
②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
解得t1=0(舍去),t2=2,
∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
此时四边形A′BEF为菱形,理由如下:
当t=2时,A′点的坐标为(2,),E(1,0),
∵∠OEF=60°
∴OF=OE=,EF=2OE=2,
∴F(0,),
∴A′F∥x轴,
∵A′F=BE=2,A′F∥BE,
∴四边形A′BEF为平行四边形,
而EF=BE=2,
∴四边形A′BEF为菱形;
(3)存在,如图:
当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
∵OE=t﹣1=,
∴此时P点坐标为(,);
当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,
∵∠AEA′=120°,
∴∠A′EB=60°,
∴∠EBA′=30°
∴BQ=A′Q=•t=t,
∴t﹣1+t=3,解得t=,
此时A′(1,),E(,0),
点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
综上所述,满足条件的P点坐标为(,)或(,﹣).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
20、 (1);(2).
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
【详解】
解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
故答案为:;
(2)画树状图为:
共有6种等可能的结果数,其中乙摸到白球的结果数为2,
所以乙摸到白球的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
21、(1)2元;(2)第二批花的售价至少为元;
【解析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
根据题意得:,
解得:,
经检验:是原方程的解,且符合题意.
答:第一批花每束的进价是2元.
(2)由可知第二批菊花的进价为元.
设第二批菊花的售价为m元,
根据题意得:,
解得:.
答:第二批花的售价至少为元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
22、﹣1≤x<1.
【解析】
求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.
【详解】
解不等式①,得x<1,
解不等式②,得x≥﹣1,
∴不等式组的解集是﹣1≤x<1.
不等式组的解集在数轴上表示如下:
23、,
【解析】
先根据完全平方公式进行约分化简,再代入求值即可.
【详解】
原式=-==,将a=+1代入得,原式===,故答案为.
【点睛】
本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.
24、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
【解析】
根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
25、
【解析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
【详解】
原式=9﹣2+1﹣2=.
【点睛】
本题考查了实数运算,正确化简各数是解题的关键.
26、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
27、(1)见解析;(2)16
【解析】
试题分析:(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.
(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD的面积.
试题解析:(1)证明:∵四边形ABCD是平行四边形
∴∠A=∠C,AB∥CD
∴∠ABF=∠CEB
∴△ABF∽△CEB
(2)解:∵四边形ABCD是平行四边形
∴AD∥BC,AB平行且等于CD
∴△DEF∽△CEB,△DEF∽△ABF
∵DE=CD
∴,
∵S△DEF=2
S△CEB=18,S△ABF=8,
∴S四边形BCDF=S△BCE-S△DEF=16
∴S四边形ABCD=S四边形BCDF+S△ABF=16+8=1.
考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
2022年山东省禹城市重点中学中考数学押题试卷含解析: 这是一份2022年山东省禹城市重点中学中考数学押题试卷含解析,共19页。试卷主要包含了下列几何体中三视图完全相同的是,下列方程中,没有实数根的是等内容,欢迎下载使用。
2022年山东省曹县中考数学押题试卷含解析: 这是一份2022年山东省曹县中考数学押题试卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
山东省五莲于里中学2022年中考数学全真模拟试题含解析: 这是一份山东省五莲于里中学2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了下列运算结果正确的是,如图,两个反比例函数y1=等内容,欢迎下载使用。