


湘教版数学八上 第五章 二次根式 知识点汇总
展开二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。知识点五:二次根式的性质知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的, ,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【例题精选】二次根式有意义的条件: 例1:求下列各式有意义的所有x的取值范围。 解:(1)要使有意义,必须,由得, 当时,式子在实数范围内有意义。 (2)要使有意义,为任意实数均可, 当x取任意实数时均有意义。 (3)要使有意义,必须 的范围内。 当时,式子在实数范围内有意义。小练习:(1)当x是多少时,在实数范围内有意义?(2)当x是多少时, +在实数范围内有意义?② (3)当x是多少时,+x2在实数范围内有意义?(4)当时,有意义。2. 使式子有意义的未知数x有( )个. A.0 B.1 C.2 D.无数3.已知y=++5,求的值.4.若+有意义,则=_______.5. 若有意义,则的取值范围是 。最简二次根式 例2:把下列各根式化为最简二次根式: 分析:依据最简二次根式的概念进行化简, (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。 解: 同类根式: 例3:判断下列各组根式是否是同类根式: 分析:几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式,所以判断几个二次根式是否为同类二次根式,首先要将其化为最简二次根式。 解: 分母有理化: 例4:把下列各式的分母有理化: 分析:把分母中的根号化去,叫做分母有理化,两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说,这两个代数式互为有理化因子,如与,均为有理化因式。 解: 求值:例5:计算: 分析:迅速、准确地进行二次根式的加减乘除运算是本章的重点内容,必须掌握,要特别注意运算顺序和有意识的使用运算律,寻求合理的运算步骤,得到正确的运算结果。 解: (1)原式 化简: 例6:化简: 分析:应注意(1)式,(2),所以,可看作可利用乘法公式来进行化简,使运算变得简单。 解: 例7:化简练习: 解: 化简求值: 例8:已知: 求:的值。 分析:如果把a,b的值直接代入计算的计算都较为繁琐,应另辟蹊径,考虑到互为有理化因子可计算,然后将求值式子化为的形式。 解: 小结:显然上面的解法非常简捷,在运算过程中我们必须注意寻求合理的运算途径,提高运算能力。类似的解法在许多问题中有广泛的应用,大家应有意识的总结和积累。 例9:在实数范围内因式分解: [来源:学*科*网Z*X*X*K]2x2-4;【提示】先提取2,再用平方差公式.【答案】 2(x+)(x-)..x4-2x2-3.【提示】先将x2看成整体,利用x2+px+q=(x+a)(x+b)其中a+b=p,ab=q分解.再用平方差公式分解x2-3.【答案】(x2+1)(x+)(x-).例10、综合应用:如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)【专项训练】: 一、选择题:在以下所给出的四个选择中,只有一个是正确的。 1、成立的条件是: A. B. C. D.2、把化成最简二次根式,结果为: A. B. C. D.3、下列根式中,最简二次根式为: A. B. C. D.4、已知t<1,化简得: A. B. C.2 D.05、下列各式中,正确的是: A. B. C. D.6、下列命题中假命题是: A.设 B.设 C.设 D.设7、与是同类根式的是: A. B. C. D.8、下列各式中正确的是: A. B. C. D.三、 1、化简 2、已知: 求:拓展训练一、 分式,平方根,绝对值; 成立的条件是_______________2. 当a________时,;当a________时,。3. 若,则__________;若,则__________。4. 把根号外的因式移入根号内,结果为________。5. 把-3根号外的因式移到根号内,结果为________。6. x<y,那么化简为________10.若与是同类二次根式,则a=____,b=_____。 11.求使为实数的实数的值为____。二、根式,绝对值的和为0;若=0,则=__________。如果求的算术平方根。6.在ΔABC中,a,b,c为三角形的三边,则=_______。7.已知8.如果,则=_______。三、分式的有理化1、已知x= ,y= ,求x2-y2的值。5.已知,求下列各式的值;① ;② ;③ ;四、整数部分与小数部分1.的整数部分是_________,小数部分是________。4.已知,的整数部分为,小数部分为,求的值。 五、 根式,分式的倒数;1.已知x+=4,求x-的值。若的值;六、转换完全平方公式;1.已知,求的值3.已知x,y是实数,,若axy-3x=y,求a的值;5、已知0 <x<1,化简:-6、化简:1、 ; 2、;七、技巧性运算1.2、计算的结果是_________4、已知,,那么的值是__________5、已知那么的值是__________6、已知,求的值 附:中考类型1、在实数范围内,有意义,则x的取值范围是( );A.x ≥0 B.x ≤0 C.x >0 D.x <0 2、使二次根式有意义的x的取值范围是 ( );A. B. C. D. ;3一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是( );A. B. C. D.4、在电路中,已知一个电阻的阻值R和它消耗的电功率P.由电功率计算公式 可得它两端的电压U为( ); A. B. C. D.5、使代数式有意义的x的取值范围是( ) A、 ;B、 ;C、 ;D 、且;6函数的自变量的取值范围是( )A. B.C. D.函数+中自变量的取值范围是( ) A.;B. ;C. 且; D.且;二、二次根式的运算问题7、(09武汉市)二次根式的值是( );A. B.或 C. D.8、 (衡阳市2009年) 下面计算正确的是( ); A. B. C. D.9、(09年安顺市)下列计算正确的是( ); A. B. C. D.10、(09太原市)计算的结果等于 .11、(黔东南州2009年) ___________;12、(09山西省)计算: . 13、(09年襄樊市)计算: .备用题、(09绥化市)计算: . 三、二次根式与绝对值、0指数幂等的混合运算14、(09黔东南州)方程,当时,m的取值范围是( );A、;B、;C、;D、;15、(09嘉兴市)当时,代数式的值是________________.16、(09嘉兴市)计算:.17、(09台州市)计算:.四、二次根式与整式的化简求值问题:18、(09广州市)先化简,再求值:,其中19、(09孝感市)已知:求下列各式的值. (1);(2)20、(09威海市)先化简,再求值:,其中.1、已知,,求:的值;2、已知:,计算:(1) ;(2) 五、二次根式与分式的化简求值问题:21、(09黔东南州)先化简,再求值:,其中;22、(09恩施)求代数式的值:,其中.23、(09泰安市)先化简、再求值:。24、(09黔东南州)先化简,再求值:,其中;六、二次根式的探究规律问题:25、我们看几个等式:=1×4+1=5;=2×5+1=11; =3×6+1=19;仔细观察上面几道题及其结果,你能发现什么规律?能解释这一规律吗?并用你发现的规律猜想下面的结果:①=___________. ②=( )×( ) ( );③=___________.2011安徽,4,4分)设a=-1,a在两个相邻整数之间,则这两个整数是( )A.1和2 B.2和3 C.3和4 D.4和5(2011山东烟台,5,4分)如果,则( )A.a< B. a≤ C. a> D. a≥2011安徽芜湖,14,5分)已知、为两个连续的整数,且,则 .2011四川内江,加试1,6分)若,则的值是 .(2011山东德州12,4分)当时,=____________2011四川内江,加试3,6分)已知,则 .2011四川凉山州,25,5分)已知为有理数,分别表示的整数部分和小数部分,且,则 2011湖北黄冈,3,3分)要使式子有意义,则a的取值范围为_____________________.下列运算正确的是( )(黑龙江齐齐哈尔09)A. B. C. D.若=(x+y)2,则x-y的值为( ) (09湖北荆门) (A)-1. (B)1. (C)2. (D)3.化简:已知,,求:的值;我们看几个等式:=1×4+1=5;=2×5+1=11; =3×6+1=19;仔细观察上面几道题及其结果,你能发现什么规律?能解释这一规律吗?并用你发现的规律猜想下面的结果:①=___________. ②=( )×( ) ( );③=___________.y=++2009,则x+y= 化简:的结果为( )A、4—2a B、0 C、2a—4 D、4.已知a<0,那么│-2a│可化简为( ) A.-a B.a C.-3a D.3a(2009年梅州市) 如果,则=_______.将根号外的a移到根号内,得 ( )A. ; B. -; C. -; D. 例10. 观察下列各式及其验证过程:,验证:;,验证: .(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.(1);验证略(2)(n≥2,且是整数).验证:
