


2017-2021年江苏中考数学真题分类汇编之图形的性质
展开
这是一份2017-2021年江苏中考数学真题分类汇编之图形的性质,共38页。
2017-2021年江苏中考数学真题分类汇编之图形的性质
一.选择题(共16小题)
1.(2019•常州)如图,在线段PA、PB、PC、PD中,长度最小的是( )
A.线段PA B.线段PB C.线段PC D.线段PD
2.(2021•泰州)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是( )
A.点A在B、C两点之间 B.点B在A、C两点之间
C.点C在A、B两点之间 D.无法确定
3.(2020•宿迁)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为( )
A.40° B.50° C.130° D.150°
4.(2019•徐州)下列长度的三条线段,能组成三角形的是( )
A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10
5.(2021•淮安)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )
A.2 B.4 C.6 D.8
6.(2021•常州)如图,BC是⊙O的直径,AB是⊙O的弦,若∠AOC=60°,则∠OAB的度数是( )
A.20° B.25° C.30° D.35°
7.(2021•宿迁)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是( )
A.30° B.40° C.50° D.60°
8.(2021•南京)下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是( )
A.1,1,1 B.1,1,8 C.1,2,2 D.2,2,2
9.(2021•扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是( )
A.2 B.3 C.4 D.5
10.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )
A.27° B.29° C.35° D.37°
11.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )
A.27倍 B.14倍 C.9倍 D.3倍
12.(2021•无锡)如图,D、E、F分别是△ABC各边中点,则以下说法错误的是( )
A.△BDE和△DCF的面积相等
B.四边形AEDF是平行四边形
C.若AB=BC,则四边形AEDF是菱形
D.若∠A=90°,则四边形AEDF是矩形
13.(2020•无锡)下列命题正确的是( )
A.菱形的对角线相等
B.平行四边形的对角互补
C.有三个角为直角的四边形是正方形
D.对角线相等的平行四边形是矩形
14.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
15.(2020•南通)下列条件中,能判定▱ABCD是菱形的是( )
A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD
16.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于( )
A. B. C. D.3
二.填空题(共4小题)
17.(2021•镇江)如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 .
18.(2021•淮安)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是 .
19.(2021•淮安)如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=55°,则∠D的度数是 .
20.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 cm2.
三.解答题(共3小题)
21.(2021•镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.
22.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
23.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
2017-2021年江苏中考数学真题分类汇编之图形的性质
参考答案与试题解析
一.选择题(共16小题)
1.(2019•常州)如图,在线段PA、PB、PC、PD中,长度最小的是( )
A.线段PA B.线段PB C.线段PC D.线段PD
【考点】垂线段最短.版权所有
【专题】线段、角、相交线与平行线;几何直观.
【分析】由垂线段最短可解.
【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.
故选:B.
【点评】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.
2.(2021•泰州)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是( )
A.点A在B、C两点之间 B.点B在A、C两点之间
C.点C在A、B两点之间 D.无法确定
【考点】两点间的距离;整式的加减.版权所有
【专题】线段、角、相交线与平行线;几何直观.
【分析】用假设法分别计算各选项中的a值,再根据a>0判断即可.
【解答】解:∵AC=2a+1,BC=a+4,AB=3a,A、B、C三点互不重合
∴a>0,
若点A在B、C之间,
则AB+AC=BC,
即2a+1+3a=a+4,
解得a=,
故A情况存在,
若点B在A、C之间,
则BC+AB=AC,
即a+4+3a=2a+1,
解得a=﹣,
故B情况不存在,
若点C在A、B之间,
则BC+AC=AB,
即a+4+2a+1=3a,
此时无解,
故C情况不存在,
∵互不重合的A、B、C三点在同一直线上,
故选:A.
【点评】本题主要考查两点间的距离及整式的加减,分类讨论和反证法的应用是解题的关键.
3.(2020•宿迁)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为( )
A.40° B.50° C.130° D.150°
【考点】平行线的性质.版权所有
【专题】线段、角、相交线与平行线;推理能力.
【分析】由a∥b,利用“两直线平行,同位角相等”可求出∠2的度数.
【解答】解:∵a∥b,
∴∠2=∠1=50°.
故选:B.
【点评】本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.
4.(2019•徐州)下列长度的三条线段,能组成三角形的是( )
A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10
【考点】三角形三边关系.版权所有
【专题】三角形.
【分析】根据三角形两边之和大于第三边可以判断各个选项中的三条线段是否能组成三角形,本题得以解决.
【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,
∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,
∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,
∵6+8>10,∴6,8,10能组成三角形,故选项D正确,
故选:D.
【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.
5.(2021•淮安)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )
A.2 B.4 C.6 D.8
【考点】线段垂直平分线的性质.版权所有
【专题】三角形;推理能力.
【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.
【解答】解:∵DE是AB的垂直平分线,AE=4,
∴EB=EA=4,
∴BC=EB+EC=4+2=6,
故选:C.
【点评】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.
6.(2021•常州)如图,BC是⊙O的直径,AB是⊙O的弦,若∠AOC=60°,则∠OAB的度数是( )
A.20° B.25° C.30° D.35°
【考点】圆周角定理;圆心角、弧、弦的关系.版权所有
【专题】圆的有关概念及性质;推理能力.
【分析】根据圆周角定理直接来求∠B的度数,进而解答即可.
【解答】解:∵∠AOC=60°,
∴∠B=∠AOC=30°,
∵OA=OB,
∴∠OAB=∠B=30°,
故选:C.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
7.(2021•宿迁)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是( )
A.30° B.40° C.50° D.60°
【考点】三角形内角和定理;平行线的性质.版权所有
【专题】三角形;应用意识.
【分析】根据三角形内角和定理求出∠ABC,根据角平分线定义求出∠ABD,根据平行线的性质得出∠BDE=∠ABD即可.
【解答】解:在△ABC中,∠A=70°,∠C=30°,
∴∠ABC=180°﹣∠A﹣∠C=80°,
∵BD平分∠ABC,
∴∠ABD=∠ABC=40°,
∵DE∥AB,
∴∠BDE=∠ABD=40°,
故选:B.
【点评】本题考查了平行线的性质,三角形内角和定理,角平分线定义的应用,注意:两直线平行,内错角相等.
8.(2021•南京)下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是( )
A.1,1,1 B.1,1,8 C.1,2,2 D.2,2,2
【考点】三角形三边关系.版权所有
【专题】三角形;推理能力.
【分析】根据若四条线段能组成四边形,则三条较短边的和必大于最长边逐项判定即可.
【解答】解:A、∵1+1+1=3<5,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
B、∵1+1+5=7<8,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
C、∵1+2+2=5,
∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;
D、∵2+2+2=6>5,
∴此三条线段与长度为5的线段能组成四边形,故符合题意;
故选:D.
【点评】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.
9.(2021•扬州)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,满足条件的格点C的个数是( )
A.2 B.3 C.4 D.5
【考点】等腰直角三角形.版权所有
【专题】分类讨论;等腰三角形与直角三角形;几何直观.
【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【解答】解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:B.
【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
10.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )
A.27° B.29° C.35° D.37°
【考点】切线的性质;圆周角定理.版权所有
【专题】与圆有关的位置关系;运算能力;推理能力.
【分析】连接OD,根据切线的性质得到∠ADO=90°,根据直角三角形的性质得到∠AOD=90°﹣36°=54°,根据圆周角定理即可得到结论.
【解答】解:连接OD,
∵⊙O与边AC相切于点D,
∴∠ADO=90°,
∵∠BAC=36°,
∴∠AOD=90°﹣36°=54°,
∴∠AFD=AOD=54°=27°,
故选:A.
【点评】本题考查了切线的性质,圆周角定理,正确的作出辅助线构造直角三角形是解题的关键.
11.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )
A.27倍 B.14倍 C.9倍 D.3倍
【考点】正多边形和圆;正方形的性质.版权所有
【专题】正多边形与圆;与圆有关的计算;运算能力;模型思想.
【分析】根据圆的直径与正方形的对角线之比为3:1,设圆的直径,表示出正方形的对角线的长,再分别表示圆、正方形的面积即可.
【解答】解:设AB=6a,因为CD:AB=1:3,
所以CD=2a,OA=3a,
因此正方形的面积为CD•CD=2a2,
圆的面积为π×(3a)2=9πa2,
所以圆的面积是正方形面积的9πa2÷(2a2)≈14(倍),
故选:B.
【点评】本题考查圆的有关计算,正方形的性质,掌握圆的面积和正方形面积的计算方法是得出正确答案的前提.
12.(2021•无锡)如图,D、E、F分别是△ABC各边中点,则以下说法错误的是( )
A.△BDE和△DCF的面积相等
B.四边形AEDF是平行四边形
C.若AB=BC,则四边形AEDF是菱形
D.若∠A=90°,则四边形AEDF是矩形
【考点】矩形的判定;三角形的面积;三角形中位线定理;平行四边形的判定;菱形的判定.版权所有
【专题】三角形;矩形 菱形 正方形;推理能力.
【分析】根据矩形的判定定理,菱形的判定定理,三角形中位线定理判断即可.
【解答】解:A.连接EF,
∵D、E、F分别是△ABC各边中点,
∴EF∥BC,BD=CD,
设EF和BC间的距离为h,
∴S△BDE=BD•h,S△DCF=CD•h,
∴S△BDE=S△DCF,
故本选项不符合题意;
B.∵D、E、F分别是△ABC各边中点,
∴DE∥AC,DF∥AB,
∴DE∥AF,DF∥AE,
∴四边形AEDF是平行四边形,
故本选项不符合题意;
C.∵D、E、F分别是△ABC各边中点,
∴EF=BC,DF=AB,
若AB=BC,则FE=DF,
∴四边形AEDF不一定是菱形,
故本选项符合题意;
D.∵四边形AEDF是平行四边形,
∴若∠A=90°,则四边形AEDF是矩形,
故本选项不符合题意;
故选:C.
【点评】本题考查了矩形的判定,菱形的判定,平行四边形的判定,三角形的中位线定理,熟练掌握矩形的判定定理是解题的关键.
13.(2020•无锡)下列命题正确的是( )
A.菱形的对角线相等
B.平行四边形的对角互补
C.有三个角为直角的四边形是正方形
D.对角线相等的平行四边形是矩形
【考点】命题与定理;平行四边形的性质;菱形的性质;矩形的判定;正方形的判定.版权所有
【专题】多边形与平行四边形;矩形 菱形 正方形;推理能力.
【分析】利用菱形、平行四边形的性质及正方形、矩形的判定方法分别判断后即可确定正确的选项.
【解答】解:A、菱形的对角线互相垂直但不一定相等,故原命题错误,不符合题意;
B、平行四边形的对角互补,故原命题 错误,不符合题意;
C、有三个角是直角的四边形是矩形,故原命题错误,不符合题意;
D、对角线相等的平行四边形是矩形,正确,符合题意,
故选:D.
【点评】考查了命题与定理的知识,解题的关键是了解菱形、平行四边形的性质及正方形、矩形的判定方法等知识,属于基础知识,比较简单.
14.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )
A. B.2 C.2 D.3
【考点】全等三角形的判定与性质;平移的性质;垂线段最短.版权所有
【专题】三角形;应用意识.
【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.
【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,
在Rt△AHB中,
∵∠ABC=60°,AB=2,
∴BH=1,AH=,
在Rt△AHC中,∠ACB=45°,
∴AC===,
∵点D为BC中点,
∴BD=CD,
在△BFD与△CKD中,
,
∴△BFD≌△CKD(AAS),
∴BF=CK,
延长AE,过点C作CN⊥AE于点N,
可得AE+BF=AE+CK=AE+EN=AN,
在Rt△ACN中,AN<AC,
当直线l⊥AC时,最大值为,
综上所述,AE+BF的最大值为.
故选:A.
【点评】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.
15.(2020•南通)下列条件中,能判定▱ABCD是菱形的是( )
A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD
【考点】菱形的判定;平行四边形的性质.版权所有
【专题】多边形与平行四边形;矩形 菱形 正方形;推理能力.
【分析】根据对角线垂直的平行四边形是菱形,即可得出答案.
【解答】解:∵四边形ABCD是平行四边形,
∴当AC⊥BD时,四边形ABCD是菱形;
故选:D.
【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.
16.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于( )
A. B. C. D.3
【考点】菱形的性质;坐标与图形性质.版权所有
【专题】平面直角坐标系;矩形 菱形 正方形.
【分析】如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.首先说明点G与点E重合时,FG的值最大,如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.利用相似三角形的性质构建方程求解即可.
【解答】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.
∵E(﹣2,0),F(0,6),
∴OE=2,OF=6,
∴EF==2,
∵∠FGE=90°,
∴FG≤EF,
∴当点G与E重合时,FG的值最大.
如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.
∵PA=PB,BE=EC=a,
∴PE∥AC,BJ=JH,
∵四边形ABCD是菱形,
∴AC⊥BD,BH=DH=,BJ=,
∴PE⊥BD,
∵∠BJE=∠EOF=∠PEF=90°,
∴∠EBJ=∠FEO,
∴△BJE∽△EOF,
∴=,
∴=,
∴a=,
∴BC=2a=,
故选:A.
【点评】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.
二.填空题(共4小题)
17.(2021•镇江)如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 120° .
【考点】多边形内角与外角.版权所有
【专题】多边形与平行四边形;推理能力.
【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x,故又可表示成6x,列方程可求解.
【解答】解:设这个正六边形的每一个内角的度数为x,
则6x=(6﹣2)×180°,
解得x=120°.
故答案为:120°.
【点评】本题考查根据多边形的内角和计算公式求多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.
18.(2021•淮安)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是 4 .
【考点】三角形三边关系.版权所有
【专题】三角形;应用意识.
【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边是偶数这一条件,求得第三边的值.
【解答】解:设第三边为a,根据三角形的三边关系知,
4﹣1<a<4+1,即3<a<5,
又∵第三边的长是偶数,
∴a为4.
故答案为:4.
【点评】此题主要考查了三角形三边关系,掌握第三边满足:大于已知两边的差,且小于已知两边的和是解决问题的关键.
19.(2021•淮安)如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=55°,则∠D的度数是 35° .
【考点】圆周角定理.版权所有
【专题】圆的有关概念及性质;推理能力.
【分析】根据直径所对的圆周角是直角推出∠ACB=90°,再结合图形由直角三角形的性质得到∠B=90°﹣∠CAB=35°,进而根据同弧所对的圆周角相等推出∠D=∠B=35°.
【解答】解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠CAB=55°,
∴∠B=90°﹣∠CAB=35°,
∴∠D=∠B=35°.
故答案为:35°.
【点评】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出∠ACB=90°及∠D=∠B,注意运用数形结合的思想方法.
20.(2021•南通)圆锥的母线长为2cm,底面圆的半径长为1cm,则该圆锥的侧面积为 2π cm2.
【考点】圆锥的计算.版权所有
【专题】与圆有关的计算;推理能力.
【分析】直接用圆锥的侧面积公式计算即可.
【解答】解:圆锥的侧面积为:πrl=2×1π=2πcm2,
故答案为:2π.
【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.
三.解答题(共3小题)
21.(2021•镇江)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.
(1)求证:△ABE≌△CDF;
(2)连接BD,∠1=30°,∠2=20°,当∠ABE= 10 °时,四边形BFDE是菱形.
【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;菱形的性质.版权所有
【专题】图形的全等;多边形与平行四边形;矩形 菱形 正方形;推理能力.
【分析】(1)由“SAS”可证△ABE≌△CDF;
(2)通过证明BE=DE,可得结论.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS);
(2)当∠ABE=10°时,四边形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,
∴BF=DE,
∴四边形BFDE是平行四边形,
∵∠1=30°,∠2=20°,
∴∠ABD=∠1﹣∠2=10°,
∵∠ABE=10°,
∴∠DBE=20°,
∴∠DBE=∠2=20°,
∴BE=DE,
∴平行四边形BFDE是菱形,
故答案为10.
【点评】本题考查了菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,掌握菱形的判定是解题的关键.
22.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.
(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;
(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.
【考点】直线与圆的位置关系;解直角三角形;正方形的性质;圆周角定理.版权所有
【专题】圆的有关概念及性质;推理能力.
【分析】(1)如图1中,连接AP,过点O作OH⊥AB于H,交CD于E.求出OE的长,与半径比较,可得结论.
(2)如图2中,延长AE交BC的延长线于T,连接PQ.利用面积法求出BP,可得结论.
【解答】解:(1)如图1﹣1中,连接AP,过点O作OH⊥AB于H,交CD于E.
∵四边形ABCD是正方形,
∴AB=AD=4,∠ABP=90°,
∴AP是直径,
∴AP===5,
∵OH⊥AB,
∴AH=BH,
∵OA=OP,AH=HB,
∴OH=PB=,
∵∠D=∠DAH=∠AHE=90°,
∴四边形AHED是矩形,
∴OE⊥CE,EH=AD=4,
∴OE=EH﹣OH=4﹣=,
∴OE=OP,
∴直线CD与⊙O相切.
(2)如图2中,延长AE交BC的延长线于T,连接PQ.
∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,
∴△ADE≌△TCE(ASA),
∴AD=CT=4,
∴BT=BC+CT=4+4=8,
∵∠ABT=90°,
∴AT===4,
∵AP是直径,
∴∠AQP=90°,
∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,
∴PB=PQ,
设PB=PQ=x,
∵S△ABT=S△ABP+S△APT,
∴×4×8=×4×x+×4×x,
∴x=2﹣2,
∴tan∠EAP=tan∠PAB==.
备注:本题也可以用面积法,连接PQ,PE,设BP=x,
在Rt△PEQ中,
PE2=x2+(2﹣4)2,
在Rt△PEC中,
PE2=(4﹣x)2+22,
则x2+(2﹣4)2=(4﹣x)2+22,
解得x=PB=2﹣2,
∴tan∠EAP=tan∠PAB==.
【点评】本题考查直线与圆的位置关系,正方形的性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
23.(2021•南通)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对称点为点F,连接CF,设∠ABE=α.
(1)求∠BCF的大小(用含α的式子表示);
(2)过点C作CG⊥直线AF,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;
(3)将△ABE绕点B顺时针旋转90°得到△CBH,点E的对应点为点H,连接BF,HF.当△BFH为等腰三角形时,求sinα的值.
【考点】四边形综合题.版权所有
【专题】图形的全等;等腰三角形与直角三角形;矩形 菱形 正方形;平移、旋转与对称;圆的有关概念及性质;推理能力.
【分析】(1)由轴对称的性质可得AB=BF,BE⊥AF,可求∠CBF=90°﹣2α,由等腰三角形的性质可求解;
(2)通过证明点A,点D,点G,点C四点共圆,可得∠AGD=∠ACD=45°,由等腰三角形的性质可得∠AFB=90°﹣α,可得∠CFG=45°=∠DGA,可证DG∥CF;
(3)分三种情况讨论,由旋转的性质可得AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,由“ASA”可证△ABE≌△NHB,可得BN=AE=AB,即可求解.
【解答】解:(1)如图1,连接BF,
∵点A关于直线BE的对称点为点F,
∴AB=BF,BE⊥AF,
∴∠ABE=∠EBF=α,
∴∠CBF=90°﹣2α,
∵四边形ABCD是正方形,
∴AB=BC,
∴BF=BC,
∴∠BCF==45°+α;
(2)DG∥CF,
理由如下:如图2,连接AC,
∵四边形ABCD是正方形,
∴∠ACD=45°,∠ADC=90°,
∵CG⊥AF,
∴∠CGA=∠ADC=90°,
∴点A,点D,点G,点C四点共圆,
∴∠AGD=∠ACD=45°,
∵AB=BF,∠ABF=2α,
∴∠AFB==90°﹣α,
∴∠AFC=135°,
∴∠CFG=45°=∠DGA,
∴DG∥CF;
(3)∵BE>AB,
∴BH>BF,
∴BH≠BF;
如图3,当BH=FH时,过点H作HN⊥BF于N,
∵将△ABE绕点B顺时针旋转90°得到△CBH,
∴△ABE≌△CBH,∠EBH=90°=∠ABC,
∴AE=CH,BE=BH,∠ABE=∠CBH=α=∠FBE,AB=BC,
∴∠HBF=90°﹣α,
∵BH=FH,HN⊥BF,
∴BN=NF=BF=AB,∠BNH=90°=∠BAE,
∴∠BHN=α,
∴∠ABE=∠BHN,
∴△ABE≌△NHB(ASA),
∴BN=AE=AB,
∴BE==AE,
∴sinα==,
当BF=FH时,
∴∠FBH=∠FHB=90°﹣α,
∴∠BFH=2α=∠ABF,
∴AB∥FH,
即点F与点C重合,则点E与点D重合,
∵点E在边AD上(不与端点A,D重合),
∴BF=FH不成立,
综上所述:sinα的值为.
【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,锐角三角函数,圆的有关知识,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.
考点卡片
1.整式的加减
(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.
(2)整式的加减实质上就是合并同类项.
(3)整式加减的应用:
①认真审题,弄清已知和未知的关系;
②根据题意列出算式;
③计算结果,根据结果解答实际问题.
【规律方法】整式的加减步骤及注意问题
1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.
2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.
2.坐标与图形性质
1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.
3.两点间的距离
(1)两点间的距离
连接两点间的线段的长度叫两点间的距离.
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.
4.垂线段最短
(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.
(2)垂线段的性质:垂线段最短.
正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.
(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.
5.平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
6.三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
7.三角形三边关系
(1)三角形三边关系定理:三角形两边之和大于第三边.
(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.
(3)三角形的两边差小于第三边.
(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.
8.三角形内角和定理
(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.
(2)三角形内角和定理:三角形内角和是180°.
(3)三角形内角和定理的证明
证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.
(4)三角形内角和定理的应用
主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
9.全等三角形的判定与性质
(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
10.线段垂直平分线的性质
(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
(2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
11.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
12.三角形中位线定理
(1)三角形中位线定理:
三角形的中位线平行于第三边,并且等于第三边的一半.
(2)几何语言:
如图,∵点D、E分别是AB、AC的中点
∴DE∥BC,DE=BC.
13.多边形内角与外角
(1)多边形内角和定理:(n﹣2)•180° (n≥3且n为整数)
此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.
(2)多边形的外角和等于360°.
①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.
②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.
14.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等.
②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分.
(3)平行线间的距离处处相等.
(4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积.
②同底(等底)同高(等高)的平行四边形面积相等.
15.平行四边形的判定
(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.
(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.
(3)一组对边平行且相等的四边形是平行四边形.
符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.
(4)两组对角分别相等的四边形是平行四边形.
符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.
(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.
16.菱形的性质
(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.
(2)菱形的性质
①菱形具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
(3)菱形的面积计算
①利用平行四边形的面积公式.
②菱形面积=ab.(a、b是两条对角线的长度)
17.菱形的判定
①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
②四条边都相等的四边形是菱形.
几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;
③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形
18.矩形的判定
(1)矩形的判定:
①矩形的定义:有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)
(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.
②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.
19.正方形的性质
(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
(2)正方形的性质
①正方形的四条边都相等,四个角都是直角;
②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
20.正方形的判定
正方形的判定方法:
①先判定四边形是矩形,再判定这个矩形有一组邻边相等;
②先判定四边形是菱形,再判定这个菱形有一个角为直角.
③还可以先判定四边形是平行四边形,再用1或2进行判定.
21.四边形综合题
四边形综合题.
22.圆心角、弧、弦的关系
(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.
(3)正确理解和使用圆心角、弧、弦三者的关系
三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.
(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.
23.圆周角定理
(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.
注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.
(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.
(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
24.直线与圆的位置关系
(1)直线和圆的三种位置关系:
①相离:一条直线和圆没有公共点.
②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.
③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.
(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.
①直线l和⊙O相交⇔d<r
②直线l和⊙O相切⇔d=r
③直线l和⊙O相离⇔d>r.
25.切线的性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
26.正多边形和圆
(1)正多边形与圆的关系
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
(2)正多边形的有关概念
①中心:正多边形的外接圆的圆心叫做正多边形的中心.
②正多边形的半径:外接圆的半径叫做正多边形的半径.
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
27.圆锥的计算
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.
(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
(3)圆锥的侧面积:S侧=•2πr•l=πrl.
(4)圆锥的全面积:S全=S底+S侧=πr2+πrl
(5)圆锥的体积=×底面积×高
注意:①圆锥的母线与展开后所得扇形的半径相等.
②圆锥的底面周长与展开后所得扇形的弧长相等.
28.命题与定理
1、判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
3、定理是真命题,但真命题不一定是定理.
4、命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.
5、命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
29.平移的性质
(1)平移的条件
平移的方向、平移的距离
(2)平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
30.解直角三角形
(1)解直角三角形的定义
在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
(2)解直角三角形要用到的关系
①锐角、直角之间的关系:∠A+∠B=90°;
②三边之间的关系:a2+b2=c2;
③边角之间的关系:
sinA==,cosA==,tanA==.
(a,b,c分别是∠A、∠B、∠C的对边)
声明:试题解析著作权属所有,未经书面同意,不得复制发布
相关试卷
这是一份2017-2021年山东中考数学真题分类汇编之图形的性质,共46页。试卷主要包含了下列命题等内容,欢迎下载使用。
这是一份2017-2021年江苏中考数学真题分类汇编之图形的变化,共42页。
这是一份2017-2021年湖南中考数学真题分类汇编之图形的性质,共39页。