2022年江苏省扬州市仪征市中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如果两圆只有两条公切线,那么这两圆的位置关系是( )
A.内切 B.外切 C.相交 D.外离
2. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A. B. C. D.
3.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为( )
A. B. C. D.
4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
A.1 B. C. D.
5.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )
A.26×105 B.2.6×102 C.2.6×106 D.260×104
6.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
7.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )
A.4 个 B.3 个 C.2 个 D.1 个
8.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( )
A.172 B.171 C.170 D.168
9.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是( )
A.4 B.5 C.10 D.11
10.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
11.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
12.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.
14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).
15.如图,已知是的高线,且,,则_________.
16.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
17.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.
18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30°,看这栋高楼底部 C 的 俯角为 60°,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度.
20.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).
21.(6分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,
(1)求证:△ABE≌△DCF;
(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.
22.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
23.(8分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,,)
24.(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.
25.(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
26.(12分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)
27.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
【详解】
根据两圆相交时才有2条公切线.
故选C.
【点睛】
本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
2、C
【解析】
分析:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.
故选C.
点睛:考查函数的图象,正确理解题目的意思是解题的关键.
3、A
【解析】
根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
【详解】
如图所示,
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴2S2=S1.
观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
∴Sn=()n﹣2.
当n=2018时,S2018=()2018﹣2=()3.
故选A.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
4、B
【解析】
直接利用概率的意义分析得出答案.
【详解】
解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选B.
【点睛】
此题主要考查了概率的意义,明确概率的意义是解答的关键.
5、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
260万=2600000=.
故选C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
根据轴对称和中心对称的定义去判断即可得出正确答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误.
故选:C.
【点睛】
本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
7、C
【解析】
由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
【详解】
解:∵四边形 ABCD 是正方形,
∴AB=BC=CD,
∵AG=GE,
∴BG=BE,
∴∠BEG=45°,
∴∠BEA>45°,
∵∠AEF=90°,
∴∠HEC<45°,
∴HC<EC,
∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
∵BG=BE,∠B=90°,
∴∠BGE=∠BEG=45°,
∴∠AGE=135°,
∴∠GAE+∠AEG=45°,
∵AE⊥EF,
∴∠AEF=90°,
∵∠BEG=45°,
∴∠AEG+∠FEC=45°,
∴∠GAE=∠FEC,
在△GAE 和△CEF 中,
∵AG=CE,
∠GAE=∠CEF,
AE=EF,
∴△GAE≌△CEF(SAS)),
∴②正确;
∴∠AGE=∠ECF=135°,
∴∠FCD=135°﹣90°=45°,
∴③正确;
∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
∴∠FEC<45°,
∴△GBE 和△ECH 不相似,
∴④错误;
故选:C.
【点睛】
本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
8、C
【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.
【详解】
从小到大排列:
150,164,168,168,,172,176,183,185,
∴中位数为:(168+172)÷2=170.
故选C.
【点睛】
本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
9、B
【解析】
试题分析:(4+x+3+30+33)÷3=7,
解得:x=3,
根据众数的定义可得这组数据的众数是3.
故选B.
考点:3.众数;3.算术平均数.
10、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
11、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
12、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,
OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,
∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.
14、AB=AD(答案不唯一).
【解析】
已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
15、4cm
【解析】
根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.
【详解】
解:∵是的高线,
∴,
∵,,
∴.
故答案为:4cm.
【点睛】
本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.
16、4:7或2:5
【解析】
根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
【详解】
解:当E在线段CD上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=2k,BF=3k
∴BE=BF+EF=5k
∴EF:BE=2k∶5k=2∶5
当当E在线段CD的延长线上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=4k,BF=3k
∴BE=BF+EF=7k
∴EF:BE=4k∶7k=4∶7
故答案为:4:7或2:5.
【点睛】
本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
17、﹣4≤m≤﹣1
【解析】
先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.
【详解】
解:当y=7时,﹣2x﹣1=7,解得x=﹣4,
所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),
当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;
当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,
所以m的取值范围为﹣4≤m≤﹣1,
故答案为﹣4≤m≤﹣1.
【点睛】
本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.
18、5
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
考点:直角三角形斜边上的中线.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、这栋高楼的高度是
【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.
【详解】
过点A作AD⊥BC于点D,
依题意得,,,AD=120,
在Rt△ABD中,
∴,
在Rt△ADC中,
∴,
∴ ,
答:这栋高楼的高度是.
【点睛】
本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.
20、CD的长度为17﹣17cm.
【解析】
在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.
【详解】
解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,
∴∠BCE=30°,tan30°=,
∴BE=ECtan30°=51×=17(cm);
∴CF=AE=34+BE=(34+17)cm,
在Rt△AFD中,∠FAD=45°,
∴∠FDA=45°,
∴DF=AF=EC=51cm,
则CD=FC﹣FD=34+17﹣51=17﹣17,
答:CD的长度为17﹣17cm.
【点睛】
本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.
21、(1)证明见解析;(2)证明见解析
【解析】
(1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
(2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
证明:(1)如图,∵AB∥CD,
∴∠B=∠C.
∵BF=CE
∴BE=CF
∵在△ABE与△DCF中,
,
∴△ABE≌△DCF(SAS);
(2)如图,连接AF、DE.
由(1)知,△ABE≌△DCF,
∴AE=DF,∠AEB=∠DFC,
∴∠AEF=∠DFE,
∴AE∥DF,
∴以A、F、D、E为顶点的四边形是平行四边形.
22、(1)20;(2)作图见试题解析;(3).
【解析】
(1)由A类的学生数以及所占的百分比即可求得答案;
(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
【详解】
(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
故答案为20;
(2)∵C类女生:20×25%﹣2=3(名);
D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
如图:
(3)列表如下:A类中的两名男生分别记为A1和A2,
男A1
男A2
女A
男D
男A1男D
男A2男D
女A男D
女D
男A1女D
男A2女D
女A女D
共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
23、6.58米
【解析】
试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.
试题解析:过A点作AE⊥CD于E. 在Rt△ABE中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,
BE=AB•cos62°=25×0.47=11.75米, 在Rt△ADE中,∠ADB=50°, ∴DE==18米,
∴DB=DE﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.
考点:解直角三角形的应用-坡度坡角问题.
24、(1)y1=-20x+1200, 800;(2)15≤x≤40.
【解析】
(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.
【详解】
解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,
(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y1+y2=-20x+1200+25x-500=5x+700,
由题意
解得该不等式组的解集为15≤x≤40
所以发生严重干旱时x的范围为15≤x≤40.
【点睛】
此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.
25、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
【解析】
(1)根据题意得方程求解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
(3)由题意得不等式,即可得到结论.
【详解】
解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3,x2=2.
又∵31-2x≤3,即x≥6,
∴x=2
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=5.
(3)令x(31-2x)=41,得x2-15x+51=1.
解得x1=5,x2=1
∴x的取值范围是5≤x≤4.
26、(1)详见解析;(2)①详见解析;②.
【解析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
【详解】
解:(1)如图△A′B′C′为所求图形.
(2)①如图:点P为所求点.
②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
∴当AP与PB''共线时,△APB的周长有最小值.
∴△APB的周长的最小值AB+AB''=+3
故答案为 +3
【点睛】
本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
27、3+3.5
【解析】
延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
【详解】
如图,延长ED交BC延长线于点F,则∠CFD=90°,
∵tan∠DCF=i=,
∴∠DCF=30°,
∵CD=4,
∴DF=CD=2,CF=CDcos∠DCF=4×=2,
∴BF=BC+CF=2+2=4,
过点E作EG⊥AB于点G,
则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠AEG=4•tan37°,
则AB=AG+BG=4•tan37°+3.5=3+3.5,
故旗杆AB的高度为(3+3.5)米.
考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
2024年江苏省扬州市仪征市中考数学一模试卷(含解析): 这是一份2024年江苏省扬州市仪征市中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年江苏省扬州市仪征市中考数学第一次适应性试卷(含解析): 这是一份2023年江苏省扬州市仪征市中考数学第一次适应性试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省扬州市仪征市中考二模数学试题: 这是一份2023年江苏省扬州市仪征市中考二模数学试题,共6页。试卷主要包含了05,0,8,5米,在绿灯亮时,小明共用12等内容,欢迎下载使用。